首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We shall give the existence of a capacity solution to a nonlinear elliptic coupled system, whose unknowns are the temperature inside a semiconductor material, u, and the electric potential, $$\varphi $$, the model problem we refer to is $$\begin{aligned} \left\{ \begin{array}{l} \Delta _p u+g(x,u)= \rho (u)|\nabla \varphi |^2 \quad \mathrm{in} \quad \Omega ,\\ {{\,\mathrm{div}\,}}(\rho (u)\nabla \varphi ) =0 \quad \mathrm{in} \quad \Omega ,\\ \varphi =\varphi _0 \quad \text{ on } \quad {\partial \Omega },\\ u=0 \quad \mathrm{on} \quad {\partial \Omega }, \end{array} \right. \end{aligned}$$where $$\Omega \subset \mathbb {R}^N$$, $$N\ge 2$$ and $$\Delta _p u=-{\text {div}}\left( |\nabla u|^{p-2} \nabla u\right) $$ is the so-called p-Laplacian operator, and g a nonlinearity which satisfies the sign condition but without any restriction on its growth. This problem may be regarded as a generalization of the so-called thermistor problem, where we consider the case of the elliptic equation is non-uniformly elliptic.  相似文献   

2.
The purpose of this article is to study the existence and uniqueness of global solution for the nonlinear hyperbolic-parabolic equation of Kirchhoff-Carrier type: $$ u_{tt} + \mu u_t - M\left (\int _{\Omega _t}|\nabla u|^2dx\right )\Delta u = 0\quad \hbox {in}\ \Omega _t\quad \hbox {and}\quad u|_{\Gamma _t} = \dot \gamma $$ where $ \Omega _t = \{x\in {\shadR}^2 | \ x = y\gamma (t), \ y\in \Omega \} $ with boundary o t , w is a positive constant and n ( t ) is a positive function such that lim t M X n ( t ) = + X . The real function M is such that $ M(r) \geq m_0 \gt 0 \forall r\in [0,\infty [ $ .  相似文献   

3.
CLASSICAL SOLUTION OF QUASI-STATIONARY STEFAN PROBLEM   总被引:2,自引:1,他引:1  
This paper considers the quasi-stationary Stefan problem:△u(x,t)=0 in space-time domain,u=0 and Vv (?)u/(?)u=0 on the free boundary.Under the natural conditions the existence of classical solution locally in time is proved bymaking use of the property of Frechet derivative operator and fixed point theorem. For thesake of simplicity only the one-phase problem is dealt with. In fact two-phase problem can bedealt with in a similar way with more complicated calculation.  相似文献   

4.
We are concerned with existence, positivity property and long-time behavior of solutions to the following initial boundary value problem of a fourth order degenerate parabolic equation in higher space dimensions   相似文献   

5.
We consider the ( p , n m p ) right focal boundary value problem: $${\matrix{{(- 1)^{n - p} u^{(n)} \! = \lambda \;f(t, u), } \hfill & \ {{\rm for }\ 0 \lt t \lt 1, } \hfill \cr \quad \quad \,{u^{(i)} (0) = 0, } \hfill & {0 \le i \le p - 1, } \hfill \cr \quad \quad \,{u^{(i)} (1) = 0, } \hfill & {p \le i \le n - 1, } \hfill \cr}} $$ where 1 h p h n m 1 is fixed and u > 0. Using a fixed point theorem for operators on a cone, we develop criteria for the existence of positive solutions of the boundary value problem for u on a suitable interval.  相似文献   

6.
Countable families of global-in-time and blow-up similarity sign-changing patterns of the Cauchy problem for the fourth-order thin film equation (TFE-4)
$u_t=-\nabla \cdot \left(|u|^n \nabla \Delta u\right) \quad {\rm in} \quad \mathbb{R}^{N}\times\mathbb{R}_{+} \quad{\rm where}\quad n >0 ,$u_t=-\nabla \cdot \left(|u|^n \nabla \Delta u\right) \quad {\rm in} \quad \mathbb{R}^{N}\times\mathbb{R}_{+} \quad{\rm where}\quad n >0 ,  相似文献   

7.
Let \(\Omega \) be a bounded domain in a n-dimensional Euclidean space \(\mathbb {R}^{n}\). We study eigenvalues of an eigenvalue problem of a system of elliptic equations of the drifting Laplacian
$$\begin{aligned} \left\{ \begin{array}{ll} \mathbb {L_{\phi }}\mathbf{{u}} + \alpha (\nabla (\mathrm {div}{} \mathbf{{u}}) - \nabla \phi \mathrm {div}{} \mathbf{{u}})= -\bar{\sigma }\mathbf{{u}}, &{} \hbox {in} \,\Omega ; \\ \mathbf{{u}}|_{\,\partial \Omega }=0. \end{array} \right. \end{aligned}$$
Estimates for eigenvalues of the above eigenvalue problem are obtained. Furthermore, a universal inequality for lower order eigenvalues of the problem is also derived. Finally, we prove an universal inequality type Ashbaugh and Benguria for the drifting Laplacian on Riemannian manifold immersed in an unit sphere or a projective space.
  相似文献   

8.
We study the global in time existence of small classical solutions to the nonlinear Schrödinger equation with quadratic interactions of derivative type in two space dimensions $\left\{\begin{array}{l@{\quad}l}i \partial _{t} u+\frac{1}{2}\Delta u=\mathcal{N}\left( \nabla u,\nabla u\right),&;t >0 ,\;x\in {\bf R}^{2},\\ u\left( 0,x\right) =u_{0} \left( x\right),&;x\in {\bf R}^{2}, \end{array}\right.\quad\quad\quad\quad\quad\quad (0.1)$ where the quadratic nonlinearity has the form ${\mathcal{N}( \nabla u,\nabla v) =\sum_{k,l=1,2}\lambda _{kl} (\partial _{k}u) ( \partial _{l}v) }We study the global in time existence of small classical solutions to the nonlinear Schr?dinger equation with quadratic interactions of derivative type in two space dimensions
$\left\{{l@{\quad}l}i \partial _{t} u+\frac{1}{2}\Delta u=\mathcal{N}\left( \nabla u,\nabla u\right),&t >0 ,\;x\in {\bf R}^{2},\\ u\left( 0,x\right) =u_{0} \left( x\right),&x\in {\bf R}^{2}, \right.\quad\quad\quad\quad\quad\quad (0.1)$\left\{\begin{array}{l@{\quad}l}i \partial _{t} u+\frac{1}{2}\Delta u=\mathcal{N}\left( \nabla u,\nabla u\right),&t >0 ,\;x\in {\bf R}^{2},\\ u\left( 0,x\right) =u_{0} \left( x\right),&x\in {\bf R}^{2}, \end{array}\right.\quad\quad\quad\quad\quad\quad (0.1)  相似文献   

9.
The aim of this paper is investigating the existence and the multiplicity of weak solutions of the quasilinear elliptic problem $$\left\{\begin{array}{ll}-\Delta_p u\ =\ g(x, u) \quad {\rm in} \quad \Omega,\\ u=0 \qquad \qquad \qquad {\rm on}\quad \partial\Omega,\end{array}\right.$$ where ${1 < p < + \infty, \Delta_p u = {\rm div}(|\nabla {u}|^{p-2}\nabla {u})}$ , Ω is an open bounded domain of ${\mathbb{R}^N (N \geq 3)}$ with smooth boundary ?Ω and the nonlinearity g behaves as u p?1 at infinity. The main tools of the proof are some abstract critical point theorems in Bartolo et al. (Nonlinear Anal. 7: 981–1012, 1983), but extended to Banach spaces, and two sequences of quasi–eigenvalues for the p–Laplacian operator as in Candela and Palmieri (Calc. Var. 34: 495–530, 2009), Li and Zhou (J. Lond. Math. Soc. 65: 123–138, 2002).  相似文献   

10.
We study the initial-boundary value problem for nonlinear nonlocal equations on a finite interval where λ > 0 and pseudodifferential operator is defined by the inverse Laplace transform. The aim of this paper is to prove the global existence of solutions to the inital-boundary value problem (0.1) and to find the main term of the asymptotic representation in the case of the large initial data.  相似文献   

11.
In this paper, we present a recent approach via variational methods and critical point theory to obtain the existence of solutions for the second order Hamiltonian system on time scale \mathbbT\mathbb{T}
$\left\{{l@{\quad}l}u^{\Delta^{2}}(t)+A(\sigma(t))u(\sigma(t))+\nabla F(\sigma(t),u(\sigma(t)))=0,& \hbox{\ $\left\{\begin{array}{l@{\quad}l}u^{\Delta^{2}}(t)+A(\sigma(t))u(\sigma(t))+\nabla F(\sigma(t),u(\sigma(t)))=0,& \hbox{\  相似文献   

12.
We consider the following fourth order mean field equation with Navier boundary condition $$\Delta^2 u = \rho \frac{h(x) e^{u}}{\int_\Omega h e^{u}}\,\,{\rm in}\, \Omega,{\quad}u = \Delta u = 0\,\,{\rm on}\,\partial \Omega,\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad(*)$$ where h is a C 2,?? positive function, ?? is a bounded and smooth domain in ${\mathbb{R}^4}$ . We prove that for ${\rho \in (32m\sigma_3, 32(m + 1)\sigma_3)}$ the degree-counting formula for (*) is given by $$d(\rho)=\left\{\begin{array}{ll}\frac{1}{m!} (-\chi (\Omega) +1) \cdot\cdot \cdot (-\chi(\Omega)+m) & {\rm for}\, m >0 ,\\ 1 & {\rm for}\, m=0\end{array}\right.$$ where ??(??) is the Euler characteristic of ??. Similar result is also proved for the corresponding Dirichlet problem $$\Delta^2 u = \rho \frac{h(x) e^{u}}{\int_\Omega h e^{u}}\quad{\rm in}\,\Omega, \quad u = \nabla u = 0 \quad {\rm on}\,\,\partial \Omega.\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad(**)$$   相似文献   

13.
We consider the boundary-value problem
where and n is the unit outward normal. We show that there exist so many nonequivalent positive weak solutions as prescribed under certain conditions on q and R. We construct nonradial solutions for [(n + 1)/2] + 1 ⩽ p < n and some q. Bibliography: 18 titles.__________Translated from Problemy Matematicheskogo Analiza, No. 30, 2005, pp. 121–144.  相似文献   

14.
We consider the following q-eigenvalue problem for the p-Laplacian $$\left\{\begin{array}{ll}-{\rm div}\big( |\nabla u|^{p-2}\nabla u\big) = \lambda \|u\|_{L^{q}(\Omega)}^{p-q}|u|^{q-2}u \quad \quad\, {\rm in} \,\,\,\, \Omega\\ \quad\quad\quad \quad \quad \quad u = 0 \quad\qquad\qquad \quad\quad \,\,{\rm on } \,\,\,\, \partial\Omega,\end{array}\right.$$ where \({\lambda\in\mathbb{R},}\) p > 1, Ω is a bounded and smooth domain of \({\mathbb{R}^{N},}\) N > 1, \({1\leq q < p^{\star}}\) , \({p^{\star}=\frac{Np}{N-p}}\) if p < N and \({p^{\star}=\infty}\) if \({p\geq N.}\) Let λ q denote the first q-eigenvalue. We prove that in the super-linear case, \({p < q < p^{\star},}\) there exists \({\epsilon_{q}>0}\) such that if \({\lambda\in(\lambda_{q},\lambda _{q}+\epsilon_{q})}\) is a q-eigenvalue, then any corresponding q-eigenfunction does not change sign in Ω. As a consequence of this result we obtain, in the super-linear case, the isolatedness of λ q for those Ω such that the Lane–Emden problem $$\left\{\begin{array}{ll}-{\rm div}\big(|\nabla u|^{p-2}\nabla u\big) = |u|^{q-2}u \qquad\quad\quad\quad \,\,{\rm in}\,\,\,\Omega\\ \quad\quad\quad \quad \quad \quad u = 0 \quad\qquad\qquad \quad\quad \,{\rm on } \,\,\, \partial\Omega,\end{array}\right.$$ has exactly one positive solution.  相似文献   

15.
In this paper we consider a p-Laplacian equation with strong Allee effect growth rate and Dirichlet boundary condition $$\left\{\begin{array}{ll} {\rm div} (|\nabla u|^{p-2} \nabla u) + \lambda f(x,u)=0, &\quad x \in \Omega, \\ u=0, &\quad x \in \partial \Omega, \qquad \qquad ^ {(P_\lambda)} \end{array}\right.$$ where Ω is a bounded smooth domain in ${\mathbb{R}^N}$ for ${N \ge 1, p > 1}$ , and λ is a positive parameter. By using variational methods and a suitable truncation technique, we prove that problem (P λ) has at least two positive solutions for large parameter and it has no positive solutions for small parameter. In addition, a nonexistence result is investigated.  相似文献   

16.
本文主要研究如下含非线性梯度项的非强制拟线性椭圆方程\begin{equation*}\left \{\begin{array}{rl}-\text{div}(\frac{|\nabla u|^{p-2}\nabla u}{(1+|u|)^{\theta(p-1)}})+\frac{|u|^{p-2}u|\nabla u|^{p}}{(1+|u|)^{\theta p}}=\mu,~&x\in\Omega,\\ u=0,~&x\in\partial\Omega,\end{array}\right.\end{equation*} 弱解的存在性和不存在性, 其中$\Omega\subseteq\mathbb{R}^N(N\geq3)$ 是有界光滑区域, $1相似文献   

17.
In this paper we study the number of the boundary single peak solutions of the problem $$\left\{\begin{array}{ll} -\varepsilon^{2} \Delta u + u = u^{p}, \quad {\rm in}\, \Omega \\ u > 0, \quad\quad\quad\quad\quad\quad {\rm in}\, \Omega \\ \frac{\partial u}{\partial {\nu}} = 0, \quad\quad\quad\quad\quad\,\,\, {\rm on}\, \partial {\Omega}\end{array}\right.$$ for ${\varepsilon}$ small and p subcritical. Under some suitable assumptions on the shape of the boundary near a critical point of the mean curvature, we are able to prove exact multiplicity results. Note that the degeneracy of the critical point is allowed.  相似文献   

18.
In this paper, the authors establish the existence of at least three weak solutions for the Kirchhoff-type problem $$\left\{\begin{array}{ll}-K \left( \int_{\Omega}| \nabla u(x)|^{2}dx \right) \Delta u(x)= \lambda f(x,u)+\mu g(x,u),\quad {\rm in}\; \Omega,\\u=0, \qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\quad\quad {\rm on}\; \partial \Omega, \end{array} \right.$$ under appropriate hypotheses. The proofs are based on variational methods.  相似文献   

19.
We investigate the asymptotic behaviour as p of sequences of positive weak solutions of the equation $$\left\{\begin{array}{l}-\Delta_p u = \lambda\,u^{p-1}+ u^{q(p)-1}\quad {\rm in}\quad \Omega,\\ u = 0 \quad {\rm on}\quad \partial\Omega,\end{array} \right.$$ where λ > 0 and either 1 < q(p) < p or pq(p), with ${{\lim_{p\to\infty}{q(p)}/{p}=Q\neq1}}$ . Uniform limits are characterized as positive viscosity solutions of the problem $$\left\{\begin{array}{l}\min\left\{|\nabla u (x)| - \max\{\Lambda\,u (x),u ^Q(x)\}, -\Delta_{\infty}u (x)\right\} = 0 \quad {\rm in} \quad \Omega,\\ u = 0\quad {\rm on}\quad \partial\Omega.\end{array}\right.$$ for appropriate values of Λ > 0. Due to the decoupling of the nonlinearity under the limit process, the limit problem exhibits an intermediate behavior between an eigenvalue problem and a problem with a power-like right-hand side. Existence and non-existence results for both the original and the limit problems are obtained.  相似文献   

20.
In this paper we consider the problem $$\left\{ \begin{array}{ll} -\Delta u=u^p+\lambda u & \quad\hbox{ in }A,\\ u > 0&\quad \hbox{ in }A,\\ u=0 &\quad \hbox{ on }\partial A, \end{array}\right. $$ where A is an annulus of ${\mathbb{R}^N,N\ge2}$ and p?>?1. We prove bifurcation of nonradial solutions from the radial solution in correspondence of a sequence of exponents {p k } and for expanding annuli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号