首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
This paper deals with the global uniform exponential stability independent of delay of time-delay linear and time-invariant systems subject to point and distributed delays for the initial conditions being continuous real functions except possibly on a set of zero measure of bounded discontinuities. It is assumed that the delay-free system as well as an auxiliary one are globally uniformly exponentially stable and globally uniform exponential stability independent of delay, respectively. The auxiliary system is typically a part of the overall dynamics of the delayed system but not necessarily the isolated undelayed dynamics as usually assumed in the literature. Since there is a great freedom in setting such an auxiliary system, the obtained stability conditions are very useful in a wide class of practical applications.  相似文献   

2.
The converse problem of Lyapunov stability for systems of ODEs of Caratheodory type is considered. It is proved that if the right hand side of an ODE satisfies only the Osgood condition, the uniform stability of the origin is sufficient to the existence of a locally Lipschitz continuous Lyapunov function. Actually, the uniform stability is equivalent to the robust stability in this case. Moreover, as an auxiliary result, the generalization of the famous Gronwall-Bellman-Bihari inequality is also proved.  相似文献   

3.
We give a criterion for the global attractivity of a positive equilibrium of n-dimensional non-autonomous Lotka-Volterra systems with distributed delays. For a class of autonomous Lotka-Volterra systems, we show that such a criterion is sharp, in the sense that it provides necessary and sufficient conditions for the global asymptotic stability independently of the choice of the delay functions. The global attractivity of positive equilibria is established by imposing a diagonal dominance of the instantaneous negative feedback terms, and relies on auxiliary results showing the boundedness of all positive solutions. The paper improves and generalizes known results in the literature, namely by considering systems with distributed delays rather than discrete delays.  相似文献   

4.
In this paper a generalization of the delayed exponential defined by Khusainov and Shuklin (2003) [1] for autonomous linear delay systems with one delay defined by permutable matrices is given for delay systems with multiple delays and pairwise permutable matrices. Using this multidelay-exponential a solution of a Cauchy initial value problem is represented. By an application of this representation and using Pinto’s integral inequality an asymptotic stability results for some classes of nonlinear multidelay differential equations are proved.  相似文献   

5.
This paper discusses the stability of solutions of nonautonomous functional differential equations with infinite delay with respect to a parr of admissible phase spaces of Hale and Kato. A one-parameter family of Liapunov-Krasovskiį functional, together with some additional analysis, is used to prove new sufficient conditions of asymptotic and uniform asymptotic stability for such equations. It is also shown that the so-called Razumikhin condition is unessential when families of Liapunov-Krasovskiį functionals are used. Entrata in Redazione il 25 settembre 1997. Invited address at the Second Marrakesh International Conference on Differential Equations, Marrakesh, Morocco, June 1995.  相似文献   

6.
Since the celebrated Mackey–Glass model of respiratory dynamics was introduced in 1977, many results on its qualitative behavior have been obtained, including oscillation, stability and chaos. The paper reviews some known properties and presents new results for more general models: equations with time-dependent parameters, several delays, a positive periodic equilibrium and distributed delays. The problems considered in the paper involve existence, positivity and permanence of solutions, oscillation and global asymptotic stability. In addition, some general approaches to the study of nonlinear nonautonomous scalar delay equations are outlined. The paper generalizes and unifies existing results and provides an outlook on further studies.  相似文献   

7.
We study the dynamics and stability theory for impulsive hybrid set integro-differential equations with delay. Sufficient conditions for the stability of the null solution of impulsive hybrid set integro-differential equations with delay are presented.  相似文献   

8.
Stability of functional differential equations (FDE) is an increasingly important problem in both science and engineering. Delays, whether uniform or non-uniform, play an important role in the dynamics of a system. Since non-uniform delay is more general and less focused than uniform delay, this paper concentrates on the stability of high-order neutral functional differential equations (HNFDE) with non-uniform delay, and proposes a sufficient condition for it. This result may be widely helpful, thanks to the frequent emergence of a HNFDE with non-uniform delay in various fields. Its effectiveness is illustrated by some examples.  相似文献   

9.
Relationships between system states contained in the neutral equation are used to address the delay-dependent stability of a neutral system with time-varying state delay. Using linear matrix inequalities, we present a new asymptotic stability criterion, and a new robust stability criterion, for neutral systems with mixed delays. Since the criteria take into account the sizes of the neutral delay, discrete delay and the derivative of discrete delay, they are less conservative than those produced by previous approaches. Numerical examples are presented to demonstrate that these criteria are indeed more effective.  相似文献   

10.
We consider a system formulation for Sturm–Liouville operators with formally self-adjoint boundary conditions on a graph. An M-matrix associated with the boundary value problem is defined and related to the matrix Prüfer angle associated with the system boundary value problem, and consequently with the boundary value problem on the graph. Asymptotics for the M-matrix are obtained as the eigenparameter tends to negative infinity. We show that the boundary conditions may be recovered, up to a unitary equivalence, from the M-matrix and that the M-matrix is a Herglotz function. This is the first in a series of papers devoted to the reconstruction of the Sturm–Liouville problem on a graph from its M-matrix.  相似文献   

11.
For a delay differential system where the nonlinearity is motivated by applications of neural networks to spatiotemporal pattern association and can be regarded as a perturbation of a step function, we obtain the existence, stability and limiting profile of a phase-locked periodic solution using an approach very much similar to the asymptotic expansion of inner and outer layers in the analytic method of singular perturbation theory.  相似文献   

12.
For a system of delayed neural networks of Hopfield type, we deal with the study of global attractivity, multistability, and bifurcations. In general, we do not assume monotonicity conditions in the activation functions. For some architectures of the network and for some families of activation functions, we get optimal results on global attractivity. Our approach relies on a link between a system of functional differential equations and a finite-dimensional discrete dynamical system. For it, we introduce the notion of strong attractor for a discrete dynamical system, which is more restrictive than the usual concept of attractor when the dimension of the system is higher than one. Our principal result shows that a strong attractor of a discrete map gives a globally attractive equilibrium of a corresponding system of delay differential equations. Our abstract setting is not limited to applications in systems of neural networks; we illustrate its use in an equation with distributed delay motivated by biological models. We also obtain some results for neural systems with variable coefficients.  相似文献   

13.
In this paper we are interested in gaining local stability insights about the interior equilibria of delay models arising in biomathematics. The models share the property that the corresponding characteristic equations involve delay-dependent coefficients. The presence of such dependence requires the use of suitable criteria which usually makes the analytical work harder so that numerical techniques must be used. Most existing methods for studying stability switching of equilibria fail when applied to such a class of delay models. To this aim, an efficient criterion for stability switches was recently introduced in [E. Beretta, Y. Kuang, Geometric stability switch criteria in delay differential systems with delay dependent parameters, SIAM J. Math. Anal. 33 (2002) 1144–1165] and extended [E. Beretta, Y. Tang, Extension of a geometric stability switch criterion, Funkcial Ekvac 46(3) (2003) 337–361]. We describe how to numerically detect the instability regions of positive equilibria by using such a criterion, considering both discrete and distributed delay models.  相似文献   

14.
The aim of this work is to study the stability for some linear partial functional differential equations. We assume that the linear part is non-densely defined and satisfies the Hille-Yosida condition. Using the positiveness, we give nessecary and sufficient conditions independently of the delay to ensure the uniform exponential stability of the solution semigroup. An application is given for a reaction diffusion equation with several delays. RID="h1" ID="h1"This work is supported by the Moroccan Grant PARS MI 36 and TWAS Grant under contract: No. 00-412 RG/MATHS/AF/AC.  相似文献   

15.
This paper addresses the local and global stability of n-dimensional Lotka-Volterra systems with distributed delays and instantaneous negative feedbacks. Necessary and sufficient conditions for local stability independent of the choice of the delay functions are given, by imposing a weak nondelayed diagonal dominance which cancels the delayed competition effect. The global asymptotic stability of positive equilibria is established under conditions slightly stronger than the ones required for the linear stability. For the case of monotone interactions, however, sharper conditions are presented. This paper generalizes known results for discrete delays to systems with distributed delays. Several applications illustrate the results.  相似文献   

16.
This paper is concerned with the stability of n-dimensional stochastic differential delay systems with nonlinear impulsive effects. First, the equivalent relation between the solution of the n-dimensional stochastic differential delay system with nonlinear impulsive effects and that of a corresponding n-dimensional stochastic differential delay system without impulsive effects is established. Then, some stability criteria for the n-dimensional stochastic differential delay systems with nonlinear impulsive effects are obtained. Finally, the stability criteria are applied to uncertain impulsive stochastic neural networks with time-varying delay. The results show that, this convenient and efficient method will provide a new approach to study the stability of impulsive stochastic neural networks. Some examples are also discussed to illustrate the effectiveness of our theoretical results.  相似文献   

17.
In this work, we consider a new approach to the practical stability theory of impulsive functional differential equations. With Lyapunov functionals and Razumikhin technique, we use a new technique in the division of Lyapunov functions, given by Shunian Zhang, and obtain conditions sufficient for the uniform practical (asymptotical) stability of impulsive delay differential equations. An example is also discussed to illustrate the advantage of the proposed results.  相似文献   

18.
We consider a non-autonomous Lotka-Volterra competition system with distributed delays but without instantaneous negative feedbacks (i.e., pure delay systems). We establish some 3/2-type and M-matrix-type criteria for global attractivity of the positive equilibrium of the system, which generalise and improve the existing ones.  相似文献   

19.
We present a global study on the stability of the equilibria in a nonlinear autonomous neutral delay differential population model formulated by Bocharov and Hadeler. This model may be suitable for describing the intriguing dynamics of an insect population with long larval and short adult phases such as the periodical cicada. We circumvent the usual difficulties associated with the study of the stability of a nonlinear neutral delay differential model by transforming it to an appropriate non-neutral nonautonomous delay differential equation with unbounded delay. In the case that no juveniles give birth, we establish the positivity and boundedness of solutions by ad hoc methods and global stability of the extinction and positive equilibria by the method of iteration. We also show that if the time adjusted instantaneous birth rate at the time of maturation is greater than 1, then the population will grow without bound, regardless of the population death process.  相似文献   

20.
研究具有时变不确定参数的离散线性时滞系统的鲁棒控制问题,其中不确定性满足匹配条件,利用Lyapunov确定性理论,提出了鲁棒稳定性控制器一种新的设计方法,得到了这类离散不确定线性时滞系统可鲁棒镇定的充分条件。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号