首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using the averaging theory of first and second order we study the maximum number of limit cycles of generalized Linard differential systems{x = y + εh_l~1(x) + ε~2h_l~2(x),y=-x- ε(f_n~1(x)y~(2p+1) + g_m~1(x)) + ∈~2(f_n~2(x)y~(2p+1) + g_m~2(x)),which bifurcate from the periodic orbits of the linear center x = y,y=-x,where ε is a small parameter.The polynomials h_l~1 and h_l~2 have degree l;f_n~1and f_n~2 have degree n;and g_m~1,g_m~2 have degree m.p ∈ N and[·]denotes the integer part function.  相似文献   

2.
In this paper, we consider the limit cycles of a class of polynomial differential systems of the form $\dot{x}=-y, \hspace{0.2cm} \dot{y}=x-f(x)-g(x)y-h(x)y^{2}-l(x)y^{3},$ where $f(x)=\epsilon f_{1}(x)+\epsilon^{2}f_{2}(x),$ $g(x)=\epsilon g_{1}(x)+\epsilon^{2}g_{2}(x),$ $h(x)=\epsilon h_{1}(x)+\epsilon^{2}h_{2}(x)$ and $l(x)=\epsilon l_{1}(x)+\epsilon^{2}l_{2}(x)$ where $f_{k}(x),$ $g_{k}(x),$ $h_{k}(x)$ and $l_{k}(x)$ have degree $n_{1},$ $n_{2},$ $n_{3}$ and $n_{4},$ respectively for each $k=1,2,$ and $\varepsilon$ is a small parameter. We obtain the maximum number of limit cycles that bifurcate from the periodic orbits of the linear center $\dot{x}=-y,$ $\dot{y}=x$ using the averaging theory of first and second order.  相似文献   

3.
Using the profile decomposition, we will show the relatively compactness of the minimizing sequence to the critical embeddings between Besov spaces, which implies the existence of minimizer of the critical embeddings of Besov spaces $\dot{B}^{s_1}_{p_1,q_1}\hookrightarrow \dot{B}^{s_2}_{p_2,q_2}$ in $d$ dimensions with $s_1-d/p_1=s_2-d/p_2$, $s_1>s_2$ and $1 \leq q_1相似文献   

4.
We investigate the asymptotic behavior of the entropy numbers of the compact embedding $$ B^{s_1}_{p_1,q_1} \!\!(\mbox{\footnotesize\bf R}^d, \alpha) \hookrightarrow B^{s_2}_{p_2,q_2} \!\!({\xxR}). $$ Here $B^s_{p,q} \!({\mbox{\footnotesize\bf R}^d}, \alpha)$ denotes a weighted Besov space, where the weight is given by $w_\alpha (x) = (1+| x |^2)^{\alpha/2}$, and $B^{s_2}_{p_2,q_2} \!({\mbox{\footnotesize\bf R}^d})$ denotes the unweighted Besov space, respectively. We shall concentrate on the so-called limiting situation given by the following constellation of parameters: $s_2 < s_1$, $0 < p_1,p_2 \le \infty$, and $$ \alpha = s_1 - \frac{d}{p_1} - s_2 + \frac{d}{p_2} > d \, \max \Big(0, \frac{1}{p_2}-\frac{1}{p_1}\Big). $$ In almost all cases we give a sharp two-sided estimate.  相似文献   

5.
We establish the existence of positive periodic solutions of the second-order singular coupled systems{x′′+ p_1(t)x′+ q_1(t)x = f_1(t, y(t)) + c_1(t),y′′+ p_2(t)y′+ q_2(t)y = f_2(t, x(t)) + c_2(t),where pi, qi, ci ∈ C(R/T Z; R), i = 1, 2; f_1, f_2 ∈ C(R/T Z ×(0, ∞), R) and may be singular near the zero. The proof relies on Schauder's fixed point theorem and anti-maximum principle.Our main results generalize and improve those available in the literature.  相似文献   

6.
应用锥压缩锥拉伸不动点定理和Leray-Schauder 抉择定理研究了一类具有P-Laplace算子的奇异离散边值问题$$\left\{\begin{array}{l}\Delta[\phi (\Delta x(i-1))]+ q_{1}(i)f_{1}(i,x(i),y(i))=0, ~~~i\in \{1,2,...,T\}\\\Delta[\phi (\Delta y(i-1))]+ q_{2}(i)f_{2}(i,x(i),y(i))=0,\\x(0)=x(T+1)=y(0)=y(T+1)=0,\end{array}\right.$$的单一和多重正解的存在性,其中$\phi(s) = |s|^{p-2}s, ~p>1$,非线性项$f_{k}(i,x,y)(k=1,2)$在$(x,y)=(0,0)$具有奇性.  相似文献   

7.
In this paper, the author considered the stability of zero solution of linear RDDE $$\begin{gathered} \ddot x(t) + p_1 (t)\dot x(t) + q_1 (t)x(t) + p_2 (t)\dot x(t - r(t)) + q_2 (t)x(t - r(t)) = O, \hfill \\ \ddot x(t) + p_1 (t)\dot x(t) + q_1 (t)x(t) + p_2 (t)\dot x(t - r(t)) = O \hfill \\ \end{gathered} $$ using Liapunov-Razumikhin functional and transformations and obtained some sufficient conditions for the stability of Eqs.(1) and (2). These results are suitable both for boundedp i (t),q i (t) andr(t).i=1,2.  相似文献   

8.
Under the Keller?COsserman condition on ${\Sigma_{j=1}^{2}f_{j}}$ , we show the existence of entire positive solutions for the semilinear elliptic system ${\Delta u_{1}+|\nabla u_{1}|=p_{1}(x)f_{1}(u_{1},u_{2}), \Delta u_{2}+|\nabla u_{2}|=p_{2}(x)f_{2}(u_{1},u_{2}),x \in \mathbb{R}^{N}}$ , where ${p_{j}(j=1, 2):\mathbb{R}^{N} \rightarrow [0,\infty)}$ are continuous functions.  相似文献   

9.
Summary. Let $\widehat{\widehat T}_n$ and $\overline U_n$ denote the modified Chebyshev polynomials defined by $\widehat{\widehat T}_n (x) = {T_{2n + 1} \left(\sqrt{x + 3 \over 4} \right) \over \sqrt{x + 3 \over 4}}, \quad \overline U_{n}(x) = U_{n} \left({x + 1 \over 2}\right) \qquad (n \in \mathbb{N}_{0},\ x \in \mathbb{R}).$ For all $n \in \mathbb{N}_{0}$ define $\widehat{\widehat T}_{-(n + 1)} = \widehat{\widehat T}_n$ and $\overline U_{-(n + 2)} = - \overline U_n$, furthermore $\overline U_{-1} = 0$. In this paper, summation formulae for sums of type $\sum\limits^{+\infty}_{k = -\infty} \mathbf a_{\mathbf k}(\nu; x)$ are given, where $\bigl(\mathbf a_{\mathbf k}(\nu; x)\bigr)^{-1} = (-1)^k \cdot \Bigl( x \cdot \widehat{\widehat T}_{\left[k + 1 \over 2\right] - 1} (\nu) +\widehat{\widehat T}_{\left[k + 1 \over 2\right]}(\nu)\Bigr) \cdot \Bigl(x \cdot \overline U_{\left[k \over 2\right] - 1} (\nu) + \overline U_{\left[k \over 2\right]} (\nu)\Bigr)$ with real constants $ x, \nu $. The above sums will turn out to be telescope sums. They appear in connection with projective geometry. The directed euclidean measures of the line segments of a projective scale form a sequence of type $(\mathbf a_{\mathbf k} (\nu;x))_{k \in \mathbb{Z}}$ where $ \nu $ is the cross-ratio of the scale, and x is the ratio of two consecutive line segments once chosen. In case of hyperbolic $(\nu \in \mathbb{R} \setminus] - 3,1[)$ and parabolic $\nu = -3$ scales, the formula $\sum\limits^{+\infty}_{k = -\infty} \mathbf a_{\mathbf k} (\nu; x) = {\frac{1}{x - q_{{+}\atop(-)}}} - {\frac{1}{x - q_{{-}\atop(+)}}} \eqno (1)$ holds for $\nu > 1$ (resp. $\nu \leq - 3$), unless the scale is geometric, that is unless $x = q_+$ or $x = q_-$. By $q_{\pm} = {-(\nu + 1) \pm \sqrt{(\nu - 1)(\nu + 3)} \over 2}$ we denote the quotient of the associated geometric sequence.
  相似文献   

10.
研究了欧氏空间R~2中单位方体Q~2=[0,1]~2上沿曲面(t,s,γ(t,s))的振荡奇异积分算子T_(α,β)f(u,v,x)=∫_(Q~2)f(u-t,v-s,x-γ(t,s))e~(it~(-β_1)s~(-β_2))t~(-1-α_1)s~(-1-α_2)dtds从Sobolev空间L_τ~p(R~(2+n))到L~p(R~(2+n))中的有界性,其中x∈R~n,(u,v)∈R~2,(t,s,γ(t,s))=(t,s,t~(P_1)s~(q_1),t~(p_2)s~(q_2),…,t~(p_n)s~(q_n))为R~(2+n)上一个曲面,且β_1α_1≥0,β_2α_20.这些结果推广和改进了R~3上的某些已知的结果.作为应用,得到了乘积空间上粗糖核奇异积分算子的Sobolev有界性.  相似文献   

11.
Bilinear operators on Herz-type Hardy spaces   总被引:4,自引:0,他引:4  
The authors prove that bilinear operators given by finite sums of products of Calderón-Zygmund operators on are bounded from into if and only if they have vanishing moments up to a certain order dictated by the target space. Here are homogeneous Herz-type Hardy spaces with and . As an application they obtain that the commutator of a Calderón-Zygmund operator with a BMO function maps a Herz space into itself.

  相似文献   


12.
Assume that L p,q , $L^{p_1 ,q_1 } ,...,L^{p_n ,q_n } $ are Lorentz spaces. This article studies the question: what is the size of the set $E = \{ (f_1 ,...,f_n ) \in L^{p_{1,} q_1 } \times \cdots \times L^{p_n ,q_n } :f_1 \cdots f_n \in L^{p,q} \} $ . We prove the following dichotomy: either $E = L^{p_1 ,q_1 } \times \cdots \times L^{p_n ,q_n } $ or E is σ-porous in $L^{p_1 ,q_1 } \times \cdots \times L^{p_n ,q_n } $ , provided 1/p ≠ 1/p 1 + … + 1/p n . In general case we obtain that either $E = L^{p_1 ,q_1 } \times \cdots \times L^{p_n ,q_n } $ or E is meager. This is a generalization of the results for classical L p spaces.  相似文献   

13.
14.
The purpose of this paper is to obtain oscillation criteria for the differential system
  相似文献   

15.
The Doppler transform of a vector field $F = (f_1,f_2,f_3)$ on $\mathbb{R}^3$ is defined by \[\displaystyle\mathcal{D}F(x,\omega) = \sum_j\int_\mathbb{R} \omega_j f_j(x+t\omega)\, dt~,\] where $x\in \mathbb{R}^3$ and $\omega \in S^2$ specifies the direction of a line passing through $x$. In practical applications, $\mathcal{D}F$ is known only for a small subset of lines in $\mathbb{R}^3$. In this article, we deal with the case of $\mathcal{D}F$ restricted to all lines passing through a fixed smooth curve. Using techniques from microlocal analysis, we study the problem of recovering the wavefront set of $\mbox{curl}(F)$ from that of the restricted Doppler transform of $F$.  相似文献   

16.
We seize some new dynamics of a Lorenz-like system: $\dot{x} = a(y - x)$, \quad $\dot{y} = dy - xz$, \quad $\dot{z} = - bz + fx^{2} + gxy$, such as for the Hopf bifurcation, the behavior of non-isolated equilibria, the existence of singularly degenerate heteroclinic cycles and homoclinic and heteroclinic orbits. In particular, our new discovery is that the system has also two heteroclinic orbits for $bg = 2a(f + g)$ and $a > d > 0$ other than known $bg > 2a(f + g)$ and $a > d > 0$, whose proof is completely different from known case. All the theoretical results obtained are also verified by numerical simulations.  相似文献   

17.
In this paper we study integral operators of the form $$T\,f\left( x \right) = \int {k_1 \left( {x - a_1 y} \right)k_2 \left( {x - a_2 y} \right)...k_m \left( {x - a_m y} \right)f\left( y \right)dy} ,$$ $$k_i \left( y \right) = \sum\limits_{j \in Z} {2^{\frac{{jn}}{{q_i }}} } \varphi _{i,j} \left( {2^j y} \right),\,1 \leqq q_i < \infty ,\frac{1}{{q_1 }} + \frac{1}{{q_2 }} + ... + \frac{1}{{q_m }} = 1 - r,$$ $0 \leqq r < 1$ , and $\varphi _{i,j}$ satisfying suitable regularity conditions. We obtain the boundedness of $T:L^p \left( {R^n } \right) \to T:L^q \left( {R^n } \right)$ for $1 < p < \frac{1}{r}$ and $\frac{1}{q} = \frac{1}{p} - r$ .  相似文献   

18.
In this paper, we study the well-posedness of an initial-boundary-value problem (IBVP) for the Boussinesq equation on a bounded domain,\begin{cases} &u_{tt}-u_{xx}+(u^2)_{xx}+u_{xxxx}=0,\quad x\in (0,1), \;\;t>0,\\ &u(x,0)=\varphi(x),\;\;\; u_t(x,0)=ψ(x),\\ &u(0,t)=h_1(t),\;\;\;u(1,t)=h_2(t),\;\;\;u_{xx}(0,t)=h_3(t),\;\;\;u_{xx}(1,t)=h_4(t).\\ \end{cases} It is shown that the IBVP is locally well-posed in the space $H^s (0,1)$ for any $s\geq 0$ with the initial data $\varphi,$ $\psi$ lie in $H^s(0,1)$ and $ H^{s-2}(0,1)$, respectively, and the naturally compatible boundary data $h_1,$ $h_2$ in the space $H_{loc}^{(s+1)/2}(\mathbb{R}^+)$, and $h_3 $, $h_4$ in the the space of $H_{loc}^{(s-1)/2}(\mathbb{R}^+)$ with optimal regularity.  相似文献   

19.
The interest of this paper lies in the estimates of solutions of the three kinds of Gronwail-Bihari integral inequalities:(Ⅰ) y(x)≤f(x) sum from i=1 to n(g_i(x)integral from n=0 to x(h_i(d)y(s)ds)),(Ⅱ) y(x)≤f(x) g(x)φ(integral from n=0 to x(h(s)w(y(s))ds))(Ⅲ) y(x)≤f(x) sum from i=1 to n(g_i(x)integral from n=0 to a(h_i(s)y(s)ds g_(n 1)φ(integral from n=0 to x(h_(n 1)(s)w(y(t))ds)).The results include some modifications and generalizations of the results of D. Willett, U. D. Dhongade and Zhang Binggen. Furthermore, applying the conclusion on the above inequalities to a Volterra integral equation and a differential equation, the authors obtain some new better results.  相似文献   

20.
In this paper, the existence and uniqueness of solution of the limit boundary value problem $\[\ddot x = f(t,x)g(\dot x)\]$(F) $\[a\dot x(0) + bx(0) = c\]$(A) $\[x( + \infty ) = 0\]$(B) is considered, where $\[f(t,x),g(\dot x)\]$ are continuous functions on $\[\{ t \ge 0, - \infty < x,\dot x < + \infty \} \]$ such that the uniqueness of solution together with thier continuous dependence on initial value are ensured, and assume: 1)$\[f(t,0) \equiv 0,f(t,x)/x > 0(x \ne 0);\]$; 2) f(t,x)/x is nondecreasing in x>0 for fixed t and non-increasing in x<0 for fixed t, 3)$\[g(\dot x) > 0\]$, In theorem 1, farther assume: 4) $\[\int\limits_0^{ \pm \infty } {dy/g(y) = \pm \infty } \]$ Condition (A) may be discussed in the following three cases $x(0)=p(p \neq 0)$(A_1) $\[x(0) = q(q \ne 0)\]$(A_2) $\[x(0) = kx(0) + r{\rm{ }}(k > 0,r \ne 0)\]$(A_3) The notation $\[f(t,x) \in {I_\infty }\]$ will refer to the function f(t,x) satisfying $\[\int_0^{ + \infty } {\alpha tf(t,\alpha )dt = + \infty } \]$ for each $\alpha \neq 0$, Theorem. 1. For each $p \neq 0$, the boundary value problem (F), (A_1), (B) has a solution if and only if $f(t,x) \in I_{\infty}$ Theorem 2. For each$q \neq 0$, the boundary value problem (F), (A_2), (B) has a solution if and only if $f(t, x) \in I_{\infty}$. Theorem 3. For each k>0 and $r \neq 0$, the boundary value problem (F), (A_3), (B) has a solution if and only if f(t, x) \in I_{\infty}, Theorem 4. The boundary value problem (F), (A_j), (B) has at most one solution for j=l, 2, 3. .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号