首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For a system of linear ordinary differential equations supplemented by a linear nonlocal condition specified by the Stieltjes integral, a solution method is examined. Unlike the familiar methods for solving problems of this type, the proposed method does not use any specially chosen auxiliary boundary conditions. This method is numerically stable if the original problem is numerically stable.  相似文献   

2.
The iterative method of the first author makes possible a self-correcting scheme for the approximate solution obtained. This scheme accelerates the convergence and substantially decreases the number of terms necessary in computation for applications involving either linear or nonlinear stochastic systems. A “feedback” term compensates for the approximation of the system inverse operator by a partial sum. Further, errors are determined in calculating the mean solution 〈y〉 and the correlation Ry(t1,t2) = 〈y(t1)y1(t2)〉 by using the approximations 〈φn〉 and 〈φn(t1)φn(t2)〉 , where φn represents n terms of the solution by the iterative method for stochastic differential equations.  相似文献   

3.
A polynomial method of approximate centers for linear programming   总被引:1,自引:0,他引:1  
We present a path-following algorithm for the linear programming problem with a surprisingly simple and elegant proof of its polynomial behaviour. This is done both for the problem in standard form and for its dual problem. We also discuss some implementation strategies.This author completed this work under the support of the research grant No. 1467086 of the Fonds National Suisses de la Recherche Scientifique.  相似文献   

4.
This paper presents an exponential matrix method for the solutions of systems of high‐order linear differential equations with variable coefficients. The problem is considered with the mixed conditions. On the basis of the method, the matrix forms of exponential functions and their derivatives are constructed, and then by substituting the collocation points into the matrix forms, the fundamental matrix equation is formed. This matrix equation corresponds to a system of linear algebraic equations. By solving this system, the unknown coefficients are determined and thus the approximate solutions are obtained. Also, an error estimation based on the residual functions is presented for the method. The approximate solutions are improved by using this error estimation. To demonstrate the efficiency of the method, some numerical examples are given and the comparisons are made with the results of other methods. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
6.
This paper extends an earlier work [Hosseini MM, Nasabzadeh H. Modified Adomian decomposition method for specific second order ordinary differential equations. Appl Math Comput 2007;186:117–23] to high order and system of differential equations. Solution of these problems is considered by proposed modification of Adomian decomposition method. Furthermore, with providing some examples, the aforementioned cases are dealt with numerically.  相似文献   

7.
It is shown that the differential equation
  相似文献   

8.
9.
In this study, a Hermite matrix method is presented to solve high‐order linear Fredholm integro‐differential equations with variable coefficients under the mixed conditions in terms of the Hermite polynomials. The proposed method converts the equation and its conditions to matrix equations, which correspond to a system of linear algebraic equations with unknown Hermite coefficients, by means of collocation points on a finite interval. Then, by solving the matrix equation, the Hermite coefficients and the polynomial approach are obtained. Also, examples that illustrate the pertinent features of the method are presented; the accuracy of the solutions and the error analysis are performed. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 1707–1721, 2011  相似文献   

10.
11.
Perturbation bounds are given for the solution of the nth order differential matrix Riccati equation using the associated linear 2nth order differential system. The new bounds are alternative to those existing in the literature and are sharper in some cases. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
13.
A Taylor matrix method is proposed for the numerical solution of the two-space-dimensional linear hyperbolic equation. This method transforms the equation into a matrix equation and the unknown of this equation is a Taylor coefficients matrix. Solutions are easily acquired by using this matrix equation, which corresponds to a system of linear algebraic equations. As a result, the finite Taylor series approach with three variables is obtained. The accuracy of the proposed method is demonstrated with one example.  相似文献   

14.
15.
A method is presented to solveAx=b by computing optimum iteration parameters for Richardson's method. It requires some information on the location of the eigenvalues ofA. The algorithm yields parameters well-suited for matrices for which Chebyshev parameters are not appropriate. It therefore supplements the Manteuffel algorithm, developed for the Chebyshev case. Numerical examples are described.  相似文献   

16.
The goal of this study is presented a reliable algorithm based on the standard differential transformation method (DTM), which is called the multi-stage differential transformation method (MsDTM) for solving Hantavirus infection model. The results obtanied by using MsDTM are compared to those obtained by using the Runge-Kutta method (R-K-method). The proposed technique is a hopeful tool to solving for a long time intervals in this kind of systems.  相似文献   

17.
An approximate analytic method of solving a Cauchy problem for normal systems of ordinary differential equations is considered. The method is based on the approximation of the solution by partial sums of shifted Chebyshev series. The coefficients of the series are determined by an iterative process using Markov quadrature formulas.  相似文献   

18.
19.
20.
A basic problem in linear algebra is the determination of the largest eigenvalue (Perron root) of a positive matrix. In the present paper a new differential equation method for finding the Perron root is given. The method utilizes the initial value differential system developed in a companion paper for individually tracking the eigenvalue and corresponding right eigenvector of a parametrized matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号