首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The chemical signals in the sequential layers of fish otoliths have the potential to provide fisheries biologists with temporal and spatial details of migration which are difficult to obtain without expensive tracking methods. Signal resolution depends, however, on the extraction technique used. We compared the use of mechanical micromilling and continuous flow isotope ratio mass spectrometry (CF‐IRMS) methods with secondary ion mass spectrometry (SIMS) to obtain δ18O profiles from otoliths of wild Atlantic salmon (Salmo salar) and used these to corroborate the time of freshwater emigration of the juvenile with macroscopic patterns within the otolith. Both techniques showed the transition occurring at the same visible feature on the otolith, allowing future analyses to easily identify the juvenile (freshwater) versus adult (marine) life‐stages. However, SIMS showed a rapid and abrupt transition whereas micromilling provided a less distinct signal. The number of samples that could be obtained per unit area sampled using SIMS was 2 to 3 times greater than that when using micromilling/CF‐IRMS although the δ18O values and analytical precisions (~0.2‰) of the two methods were comparable. In addition, SIMS δ18O results were used to compare otolith aragonite values with predicted values calculated using various isotope fractionation equations. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
As one of the simplest volatile organic compounds, glyoxal and its oxidation products were considered to be important precursors to aqueous secondary organic aerosol formation. Herein, we analyzed products from glyoxal oxidation by hydrogen peroxide in dry and liquid samples using time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS). ToF‐SIMS spectra and spectral principal component analysis (PCA) were used to investigate surface oxidation products. Dry samples were prepared on clean silicon wafers. Liquid samples consisting of glyoxal and hydrogen peroxide (H2O2) were introduced to a vacuum compatible microfluidic reactor prior to UV illumination or dark aging followed by in situ liquid SIMS analysis. A number of reaction products were observed in both dry and liquid samples; different oligomers and carboxylic acids could be formed depending on reaction conditions. In addition, hydrolyzed products were observed in the liquid samples, but not in the dry samples. Although dry samples reveal some products of the aqueous process, they are not fully representative as results from those of the aqueous samples. Our findings suggest that the ability to characterize the liquid surface reaction products provides more realistic information of the reaction products associated with aqueous secondary organic aerosol formation in the atmosphere. Meanwhile, the high mass resolution spectra from the dry sample SIMS measurement are helpful to identify oxidation products in the liquid samples.  相似文献   

3.
 A suitable fibre coating is essential to obtain optimal fibre-matrix interaction in fibre-strengthened composite materials. Thin films (∼100 nm) of silicon carbide, turbostratic carbon, and boron nitride were deposited by CVD as single or double layers on commercial multi-filament fibres in a continuous process. The fibre material itself may be carbon, alumina, silicon carbide, or a quaternary ceramic of SiCBN. The application of MCs+-SIMS enables one to determine the composition (including impurities of H and O) of various fibre coating materials with an accuracy of at least 20% relative. Due to the special geometry of the multi-filament samples the depth resolution of the SIMS depth profiles is limited, nevertheless, layered structures and some details of the interface between coating and fibre can be studied. The depth calibration of the SIMS depth profiles is derived from sputter rates established on flat samples with a composition similar to that of the fibre coating material. However, the obtained film thicknesses are not extremely different from the values derived from TEM on cross sections of coated fibres.  相似文献   

4.
The powerful nature of the secondary ion mass spectrometry (SIMS) technique was explored in order to analyse very thin surface layers that were self-assembled on steel material from acidic solution. These surface layers are adsorbed corrosion inhibitors. The SIMS technique proved useful to characterise the molecular structure and homogeneity of thin surface layers in the nanometre range of specific analytes on the metallic substrate. Using SIMS, the thermal stability of these layers was further investigated and the desorption energy at a certain temperature was determined, where special attention was devoted to the method’s static limit. In order to compare, and for certain cases emphasise, the benefits gained by using SIMS in such surface analysis compared with the X-ray photoelectron spectroscopy (XPS) method, the same samples were also analysed by means of the latter. XPS is usually considered to be the most powerful analytical tool in surface analysis studies, but, as shown herein, it has certain limitations compared to SIMS. Finally, the surface topography was investigated by employing atomic force microscopy (AFM) in order to carry out a comprehensive surface analysis.
Graphical Abstract ?
  相似文献   

5.
The major problem affecting the application of chromium in high temperature processes is the ongoing spallation of the protective oxide layer formed during hot-gas oxidation. This results in a continuous material erosion. To gain a deeper insight in the spallation and oxidation process, a high-purity powder-metallurgically produced chromium sample was submitted to a two-stage hot gas oxidation process. The formed oxide layers were investigated by 3D SIMS and scanning SIMS. The formation of the protective oxide layer is carried by the diffusion of chromium from the bulk through the already existing oxide layer and the reaction of the diffused chromium with the oxygen from the gaseous phase. In parallel to the growing of the oxide layer, an accumulation of impurities at the interface oxide layer – bulk can be observed. The enrichment of trace elements at the interface level (for the investigated sample Cl and N) can be explained by the low solubility of these elements in chromium oxide and therefore their inability to diffuse through the already formed protective layer. Received: 24 June 1996 / Revised: 22 January 1997 / Accepted: 26 January 1997  相似文献   

6.
We attempted to make an accurate depth profiling in secondary ion mass spectrometry (SIMS) including backside SIMS for ultra‐thin nanometer order layer. The depth profiles for HfO2 layers that were 3 and 5 nm thick in a‐Si/HfO2/Si were measured using quadrupole and magnetic sector type SIMS instruments. The depth profiling for an ultra‐thin layer with a high depth resolution strongly depends on how the crater‐edge and knock‐on effects can be properly reduced. Therefore, it is important to control the analyzing conditions, such as the primary ion energy, the beam focusing size, the incidence angle, the rastered area, and detected area to reduce these effects. The crater‐edge effect was significantly reduced by fabricating the sample into a mesa‐shaped structure using a photolithography technique. The knock‐on effect will be serious when the depth of the layer of interest from the surface is located within the depth of the ion mixing region due to the penetration of the primary ions. Finally, we were able to separately assign the origin of the distortion to the crater‐edge effect and knock‐on effect. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
The paper compares the effects of various surface modifications, ion implantation, alkaline treatment and anodic oxidation, upon the corrosion resistance and bioactivity of titanium. The chemical composition of the surface layers thus produced was determined by XPS, SIMS and EDS coupled with SEM. The structure of the layers was examined by TEM, and their phase composition by XRD. The corrosion resistance was determined by electrochemical methods after the samples were exposed to the test conditions for 13 h. The bioactivity of titanium was evaluated in a simulated body fluid at a temperature of 37°C after various exposure time.  相似文献   

8.
Low‐molecular‐weight organic additives such as stearic acid are commonly used as surface additives in powder injection moulding (PIM). It is therefore important to know how the additives interact with the surface of the powder used. In this study, such interactions are studied by means of controlled adsorption of carboxylic acids on the oxides of interest. The oxides are prepared by oxidation of flat samples of Fe, Cr, Mn and Si. Surface chemical characterization is done by means of XPS, the main approach on flat samples being a comparison of angle‐resolved analysis and the use of the Tougaard nanostructure analysis technique. Taking advantage of this comparison, the Tougaard method is then applied in the evaluation of XPS analyses of stainless‐steel powder with adsorbed stearic acid. In addition, time‐of‐flight SIMS analysis is used to verify the adsorption of stearic acid on the powder surface. It is shown that Tougaard nanostructure analysis can be used for determining the thickness of an organic layer on particulate material. The layer thickness of adsorbed stearic acid was estimated to be ~20 Å, corresponding to monolayer adsorption. Time‐of‐flight SIMS analysis verified the adsorption of stearic acid on the powder surface. From the XPS analysis of flat samples it was determined that the use of the metal/oxide universal cross‐section in Tougaard nanostructure analysis best described the increased background due to adsorption of carboxylic acids, and that information about molecular orientation could be gained. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
An indirect, compositional depth profiling of an inorganic multilayer system using a helium low temperature plasma (LTP) containing 0.2% (v/v) SF6 was evaluated. A model multilayer system consisting of four 10 nm layers of silicon separated by four 50 nm layers of tungsten was plasma‐etched for (10, 20, 30) s at substrate temperatures of (50, 75, and 100) °C to obtain crater walls with exposed silicon layers that were then visualized using time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) to determine plasma‐etching conditions that produced optimum depth resolutions. At a substrate temperature of 100 °C and an etch time of 10 s, the FWHM of the second, third, and fourth Si layers were (6.4, 10.9, and 12.5) nm, respectively, while the 1/e decay lengths were (2.5, 3.7, and 3.9) nm, matching those obtained from a SIMS depth profile. Though artifacts remain that contribute to degraded depth resolutions, a few experimental parameters have been identified that could be used to reduce their contributions. Further studies are needed, but as long as the artifacts can be controlled, plasma etching was found to be an effective method for preparing samples for compositional depth profiling of both organic and inorganic films, which could pave the way for an indirect depth profile analysis of inorganic–organic hybrid structures that have recently evolved into innovative next‐generation materials. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
Selective oxidation in silicon steel shows several interesting phenomena, such as the formation of an internal oxidation zone that depends on the oxidation conditions and the steel composition. In this work, SIMS and XPS were used for characterizing the formation processes of surface layers formed during selective oxidation of a typical silicon steel. The starting material is a secondary‐recrystallized 3 mass% Si‐steel sheet with a surface orientation of (011). Sample sheets were annealed at a temperature of 948–1023 K under an atmosphere with a low partial pressure of oxygen. The SIMS depth profiles show that the internal oxidation zone thickens and an iron‐rich layer that formed on the internal oxidation zone expands as the annealing temperature increases. Manganese and chromium levels increase outside the internal oxidation zone, whereas tin exists in the internal oxidation zone. The XPS results of the sample surface show that silicon and manganese levels increase on the sample surface to form oxides, and the chemical composition and state of these elements depend on the annealing temperature. In addition, tin increases on the surface of a relatively thick iron‐rich layer that formed on the internal oxidation layer. These experimental results are discussed on the basis of the thermodynamic characteristics of the elements. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

11.
A need for analysis techniques, complementary to secondary ion mass spectrometry (SIMS), for depth profiling dopants in silicon for ultra shallow junction (USJ) applications in CMOS technologies has recently emerged following the difficulties SIMS is facing there. Grazing incidence X-ray fluorescence (GIXRF) analysis in the soft X-ray range is a high-potential tool for this purpose. It provides excellent conditions for the excitation of the B-K and the As-L iii,ii shells. The X-ray standing wave (XSW) field associated with GIXRF on flat samples is used here as a tunable sensor to obtain information about the implantation profile because the in-depth changes of the XSW intensity are dependent on the angle of incidence. This technique is very sensitive to near-surface layers and is therefore well suited for the analysis of USJ distributions. Si wafers implanted with either arsenic or boron at different fluences and implantation energies were used to compare SIMS with synchrotron radiation-induced GIXRF analysis. GIXRF measurements were carried out at the laboratory of the Physikalisch-Technische Bundesanstalt (PTB) at the electron storage ring BESSY II using monochromatized undulator radiation of well-known radiant power and spectral purity. The use of an absolutely calibrated energy-dispersive detector for the acquisition of the B-Kα and As-Lα fluorescence radiation enabled the absolute determination of the total retained dose. The concentration profile was obtained by ab initio calculation and comparison with the angular measurements of the X-ray fluorescence.  相似文献   

12.
Al2O3 coatings were obtained by the alkoxide route and deposited on stainless steel using the dip coating technique. The starting precursor was aluminum sec-butoxide modified by acrylic acid in order to prevent its precipitation in the presence of water.Useful information for the structural organization of alumina coatings on stainless steel is deduced from SIMS analysis. SIMS data reveal that the coating structure brings into play two different layers: an outer alumina layer that is more or less doped, mainly by iron, and an internal layer corresponding to the alumina/steel interphase. Beneath the interphase, the presence of an oxidized steel layer on the substrate surface is detected.Whatever the coating, the alumina/steel interphase exhibits a nearly constant thickness. On the other hand, a thickness variation of the oxidized steel layer is observed between samples under study: this thickness increases with the curing time of the coating.  相似文献   

13.
The application of scanning electron microscopy (SEM) and secondary ion mass spectrometry (SIMS) for characterization of mixed plutonium and uranium particles from nuclear weapons material is presented. The particles originated from the so-called Thule accident in Greenland in 1968. Morphological properties have been studied by SEM and two groups were identified: a "popcorn" structure and a spongy structure. The same technique, coupled with an energy-dispersive X-ray (EDX) spectrometer, showed a heterogeneous composition of Pu and U in the surface layers of the particles. The SIMS depth profiles revealed a varying isotopic composition indicating a heterogeneous mixture of Pu and U in the original nuclear weapons material itself. The depth distributions agree with synchrotron-radiation-based mu-XRF (X-ray fluorescence microprobe) measurements on the particle (Eriksson, M., Wegryzynek, D., Simon, R., & Chinea-Cano, E., in prep.) when a SIMS relative sensitivity factor for Pu to U of 6 is assumed. Different SIMS identified isotopic ratio groups are presented, and the influence of interferences in the Pu and U mass range are estimated. The study found that the materials are a mixture of highly enriched 235U (235U:238U ratio from 0.96 to 1.4) and so-called weapons grade Pu (240Pu:239Pu ratio from 0.028 to 0.059) and confirms earlier work reported in the literature.  相似文献   

14.
Summary Sputter-deposited MoS2 films show excellent lubrication properties. Nevertheless, the film-substrate adherence is unsufficient and could not be improved by depositing interface layers. With the method of ion beam mixing by using argon and nitrogen beams of up to 400 keV energy a considerable enhancement of the endurance life was observed. Secondary ion mass spectrometry (SIMS) has been used to examine layers of 0.5 m thickness. Variation of the ion species, dose and energy have been used for optimum endurance life. The results of tribological measurements compared to SIMS depth profiles are demonstrated and discussed.  相似文献   

15.
External quality assessment (EQA) of CD4 testing is important for clinically monitoring of patients with HIV/AIDS. EQA materials are limited to blood samples from normal blood donors with normal CD4+ T-lymphocyte levels. This study aimed to develop low-CD4+ T-lymphocyte blood samples for CD4 EQA. CD4+ T-lymphocyte-depleted blood samples were prepared using a magnetic bead separation technique. These CD4+ T-lymphocyte-depleted blood samples were mixed with undepleted whole blood samples to obtain low-CD4+ T-lymphocyte blood samples. The percentage and the number of CD4+ T-lymphocytes were determined using a flow cytometer. An evaluation study of this low-CD4+ T-lymphocyte blood sample was performed by sending to participating laboratories to investigate the potential use as CD4 EQA material. Our results showed that a magnetic separation technique could be used to prepare low-CD4+ T-lymphocyte blood samples. CD4+ T-lymphocytes in the low-CD4+ T-lymphocyte blood samples ranged from 15 % to 18 % and 160–300 cell/μl, respectively. In addition, CD4 testing of our low-CD4+ T-lymphocyte blood samples could be achieved following both the single- and the dual-platform flow cytometric approaches. A pilot EQA investigation revealed that the CV values of the number and percentage of CD4+ T-lymphocytes were 14 % and 10 %, respectively. Having the low-CD4+ T-lymphocyte blood samples in our CD4 EQA program should ensure reliability and credibility of CD4 testing in Thailand and other resource-poor countries.  相似文献   

16.
采用电子束蒸发的方法在200℃抛光的氮化铝(AlN)陶瓷衬底上淀积200nm的Cr膜,并在高真空中退火。利用MCs+-SIMS技术(在Cs+一次离子轰击下检测MCs+型二次离子)对样品进行了深度剖析,给出了界面组分分布随退火温度与时间的变化关系。结果表明,MCs+-SIMS技术是研究金属-陶瓷界面扩散与反应的有效方法。  相似文献   

17.
A skin sample from a South‐Andean mummy dating back from the XIth century was analyzed using time‐of‐flight secondary ion mass spectrometry imaging using cluster primary ion beams (cluster‐TOF‐SIMS). For the first time on a mummy, skin dermis and epidermis could be chemically differentiated using mass spectrometry imaging. Differences in amino‐acid composition between keratin and collagen, the two major proteins of skin tissue, could indeed be exploited. A surprising lipid composition of hypodermis was also revealed and seems to result from fatty acids damage by bacteria. Using cluster‐TOF‐SIMS imaging skills, traces of bio‐mineralization could be identified at the micrometer scale, especially formation of calcium phosphate at the skin surface. Mineral deposits at the surface were characterized using both scanning electron microscopy (SEM) in combination with energy‐dispersive X‐ray spectroscopy and mass spectrometry imaging. The stratigraphy of such a sample was revealed for the first time using this technique. More precise molecular maps were also recorded at higher spatial resolution, below 1 µm. This was achieved using a non‐bunched mode of the primary ion source, while keeping intact the mass resolution thanks to a delayed extraction of the secondary ions. Details from biological structure as can be seen on SEM images are observable on chemical maps at this sub‐micrometer scale. Thus, this work illustrates the interesting possibilities of chemical imaging by cluster‐TOF‐SIMS concerning ancient biological tissues. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
A Versailles Project on Advanced Materials and Standards round robin test (RRT) has been conducted to evaluate the linearity of the instrumental intensity scale and correction method using an approximation intermediate extended dead time model with parameters derived from two different isotope depth profiles. Nine organizations in five countries participated. An arsenic‐implanted silicon wafer and a film of BN diffused into a Si wafer were supplied by the National Institute of Advanced Industrial Science and Technology along with instructions for the RRT. The instruments used to analyze 103(AsSi)? and 105(AsSi)? from arsenic‐implanted samples were five quadrupole‐type SIMS and four magnetic‐sector type SIMS. The instruments used to analyze 10B+ and 11B+ from the BN‐diffused samples were three quadrupole‐type SIMS, four magnetic‐sector type SIMS, and one time‐of‐flight type SIMS. We validated the usefulness of the approximation intermediate extended dead time model to correct saturated intensities for all SIMS in this RRT. The optimum extension parameter ρ tends to be affected by the ratio of the maximum reliable intensity to the maximum intensity in raw profiles. From the ratio, ρ may be predicted when the intensity reaches full saturation. On the other hand, ρ is also affected by lateral non‐uniformity of intensity. In practice, because the maximum intensity does not reach full saturation and the intensity is not laterally uniform, ρ is likely to be smaller than its predicted value. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper we describe the application of laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) coupling to particle analysis, i.e., the determination of the isotopic composition of micrometric uranium particles. The performances of this analysis technique are compared with those of the two reference particle analysis techniques: secondary ion mass spectrometry (SIMS) and fission track-thermo-ionization mass spectrometry (FT-TIMS), based on the measurement of the isotopic ratios of 235U/238U in particles present in an inter-comparison particulate sample. The agreement of the results obtained using LA-ICP-MS with target values and with the results obtained using FT-TIMS and SIMS was good. Accuracy was equivalent to that of the other two techniques (±3 % deviation). However, relative experimental uncertainties present with LA-ICP-MS (7 %) were higher than those present with FT-TIMS (4.5 %) and SIMS (3 %). Furthermore, measurement yield of LA-ICP-MS coupling was close to that obtained with the same quadrupole ICP-MS for the measurement of a liquid sample (~10?4), but lower than that obtained with FT-TIMS and SIMS, respectively, by a factor of 10 and 20, although the particles analyzed using LA-ICP-MS were most likely smaller (diameter ~0.6 μm, containing 4–7 fg of 235U). Nevertheless, thanks to the brevity of the signals obtained, the detection capacity for low isotopic concentrations by LA-ICP-MS coupling is equivalent to that of FT-TIMS, although it remains well below that of SIMS (×15). However, with more sensitive double focusing ICP-MS, performances equivalent to those achieved using SIMS could be obtained.  相似文献   

20.
Medieval artifacts made of glass are at a serious disadvantage concerning the chemical stability compared with ancient or common modern glasses. The total amount of silica and other network formers such as alumina is very low and potassium instead of sodium was introduced into the silicate structure by using local raw material. By means of scanning electron microscopy (SEM), secondary ion mass spectrometry (SIMS) and nuclear reaction analysis (NRA) a weathering mechanism governed by an ion exchange process could be determined for medieval glass paintings exposed to the ambient air for centuries. Additionally, the leached glass surface of medieval hollow glass artifacts found in a well and exposed to moist earth show a brown discoloring due to the oxidation of Mn(II) to Mn(IV) oxide. That process can be converted by a treatment of the glass objects in an aqueous hydrazine solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号