首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of bombardment with iron ions on the evolution of gas porosity in silicon single crystals has been studied. Gas porosity has been produced by implantation hydrogen, deuterium, and helium ions with energies of 17, 12.5, and 20 keV, respectively, in identical doses of 1 × 1017 cm–2 at room temperature. For such energy of bombarding ions, the ion doping profiles have been formed at the same distance from the irradiated surface of the sample. Then, the samples have been bombarded with iron Fe10+ ions with energy of 150 keV in a dose of 5.9 × 1014 cm–2. Then 30-min isochoric annealing has been carried out with an interval of 50°C in the temperature range of 250–900°C. The samples have been analyzed using optical and electron microscopes. An extremely strong synergetic effect of sequential bombardment of silicon single crystals with gas ions and iron ions at room temperature on the nucleation and growth of gas porosity during postradiation annealing has been observed. For example, it has been shown that the amorphous layer formed in silicon by additional bombardment with iron ions stimulates the evolution of helium blisters, slightly retards the evolution of hydrogen blisters, and completely suppresses the evolution of deuterium blisters. The results of experiments do not provide an adequate explanation of the reason for this difference; additional targeted experiments are required.  相似文献   

2.
Si crystals were implanted with 2.0- MeV Er+ at the doses of 5×1012 ions/cm2, 1×1014 ions/cm2, 5×1014ions/cm2, 1×1015 ions/cm2 and 2.5×1015 ions/cm2. Conventional furnace thermal annealing was carried out in the temperature range from 600 °C to 1150 °C. The depth distribution of Er, associated damage profiles and annealing behavioar were investigated using the Rutherford backscattering spectrometry and channelling (RBS/C) technique. A proper convolution program was used to extract the distribution of Er from the experimental RBS spectrum. The obtained distribution parameters, projected range Rp, projected range straggling ΔRp and skewness SK were compared with those of TRIM96 calculation.The experimental Rp and SK values agree well with the simulated values, while the experimental ΔRp is larger than TRIM 96 simulated value by a factor of 18%. The damage profile of silicon crystal induced by 2.0-MeV Er+ at a dose of 1×1014 ions/cm2 was extracted using the multiple-scattering dechannelling model based on Feldman’s method, which is in a good agreement with the TRIM96 calculation. For the samples with dose of 5×1014 ions/cm2 and more, an abnormal annealing behavioar was found and a qualitative explaination has been given. Received: 11 October 1999 / Accepted: 28 March 2000 / Published online: 5 July 2000  相似文献   

3.
The effect of pulsed ion-beam annealing on the surface morphology, structure, and composition of single-crystal Si(111) wafers implanted by chromium ions with a dose varying from 6 × 1015 to 6 × 1016 cm−2 and on subsequent growth of silicon is investigated for the first time. It is found that pulsed ion-beam annealing causes chromium atom redistribution in the surface layer of the silicon and precipitation of the polycrystalline chromium disilicide (CrSi2) phase. It is shown that the ultrahigh-vacuum cleaning of the silicon wafers at 850°C upon implantation and pulsed ion-beam annealing provides an atomically clean surface with a developed relief. The growth of silicon by molecular beam epitaxy generates oriented 3D silicon islands, which coalesce at a layer thickness of 100 nm and an implantation dose of 1016 cm−2. At higher implantation doses, the silicon layer grows polycrystalline. As follows from Raman scattering data and optical reflectance spectroscopy data, semiconducting CrSi2 precipitates arise inside the silicon substrate, which diffuse toward its surface during growth.  相似文献   

4.
利用真空蒸发法在石英玻璃衬底上制备了ZnS薄膜,将能量80 keV,剂量1×1017 cm-2的Ti离子注入到薄膜中,并将注入后的ZnS薄膜进行退火处理,退火温度500—700 ℃.利用X射线衍射(XRD)研究了薄膜结构的变化,利用光致发光(PL)和光吸收研究了薄膜光学性质的变化.XRD结果显示,衍射峰在500 ℃退火1 h后有一定程度的恢复;光吸收结果显示,离子注入后光吸收增强,随着退火温度的上升,光吸收逐渐降低,吸收边随着退火温度的提高发生蓝移;PL显示,薄 关键词: ZnS薄膜 离子注入 X射线衍射 光致发光  相似文献   

5.
Superconducting YBa2Cu3O7 ? x films were fabricated by dc magnetron sputtering. They were irradiated with 1.2-MeV He+ ions to doses of 4 × 1015, 8 × 1015, 16 × 1015, and 32 × 1015 cm?2. The irradiated films were subjected to stepwise (30 min per step) vacuum annealing at 500, 600, 700, 800, and 900°C. After vacuum annealing, the samples irradiated to doses of 4 × 1015, 8 × 1015, and 16 × 1015 cm?2 exhibited partial recovery of their critical temperature, whereas the sample with a dose of 32 × 1015 cm?2 exhibited no signs of partial recovery of T C. Investigation of the irradiated annealed samples with the Umka nanotechnological complex has revealed damaged surface regions extended to a relatively large (several tenths of a micrometer) depth.  相似文献   

6.
王茺  杨宇  杨瑞东  李亮  熊飞  Bao Ji-Ming 《中国物理 B》2011,20(2):26802-026802
This paper reports that the Si + self-ion-implantation are conducted on the silicon-on-insulator wafers with the 28 Si + doses of 7×10 12,1×10 13,4×10 13,and 3×10 14 cm 2,respectively.After the suitable annealing,these samples are characterized by using the photoluminescence technique at different recorded temperatures.Plentiful emission peaks are observed in these implanted silicon-on-insulator samples,including the unwonted intense P band which exhibits a great potential in the optoelectronic application.These results indicate that severe transformation of the interstitial clusters can be manipulated by the implanting dose at suitable annealing temperatures.The high critical temperatures for the photoluminescence intensity growth of the two signatures are well discussed based on the thermal ionization model of free exciton.  相似文献   

7.
Up to now a great deal of investigations in ion beam mixing of iron-aluminium layers are known. However, the easier way to produce such layers by direct implantation of aluminium ions in iron is less studied. In the present work aluminium implanted iron layers are studied. Iron samples were implanted with aluminium ions at 50, 100, and 200 keV, respectively, with doses between 5×1016 and 5×1017 cm−2. Independent of energy, at doses up to 2×1017 cm−2, besides alpha iron further magnetic fractions with a Fe3Al-like structure are formed while at a dose of 5×1017 cm−2 amorphous nonmagnetic components are formed.  相似文献   

8.
Ge ions of 100 keV were implanted into a 120 nm-thick SiO2 layer on n-Si at room temperature while those of 80 keV were into the same SiO2 layer on p-Si. Samples were, subsequently, annealed at 500°C for 2 h to effectively induce radiative defects in the SiO2. Maximum intensities of sharp violet photoluminescence (PL) from the SiO2/n-Si and the SiO2/p-Si samples were observed when the samples have been implanted with doses of 1×1016 and 5×1015 cm−2, respectively. According to current–voltage (IV) characteristics, the defect-related samples exhibit large leakage currents with electroluminescence (EL) at only reverse bias region regardless of the type of substrate. Nanocrystal-related samples obtained by an annealing at 1100°C for 4 h show the leakage at both the reverse and the forward region.  相似文献   

9.
Ion-implanted shallow junctions have been investigated using BE2 (molecular ions) by the anodic oxidation method coupled with a four-point probe technique. BF2 ions were implanted through screen oxide at doses of 3–5 × 1015 ions/cm2 and energies of 25 and 45 keV which is equivalent to 5.6 keV and 10 keV of boron ions. The effect of energy, dose and annealing temperature on shallow junctions is presented in this paper. The shallow junctions in the range of 0.19 μm to 0.47 μm were fabricated.

The effect of fluorine on sheet resistivity of boron implanted silicon at various doses, treated with two-step and three-step annealing, is also presented for comparison in the paper.  相似文献   

10.
Finely dispersed β-FeSi2 films were formed by implanting Fe+ ions with an energy of 40 keV and a dose of 1×1016 cm−2 in Si single crystals, followed by nanosecond pulsed ion-beam treatment. The results of glancing incidence x-ray diffraction indicate the formation of a highly grain-oriented film consisting of inclusions of the iron disilicide phase (β-FeSi2) with a grain size of approximately 40 nm surrounded by a polycrystalline Si matrix. The photoluminescence spectroscopy data reveal that the photoluminescence signal with a peak around 1.56 μm, which is observed up to 210 K, is associated with direct interband transitions in β-FeSi2 and not with the contribution from the dislocation-induced line D1. __________ Translated from Fizika Tverdogo Tela, Vol. 43, No. 9, 2001, pp. 1569–1572. Original Russian Text Copyright ? 2001 by Bayazitov, Batalov, Terukov, Kudoyarova.  相似文献   

11.
Sintered plates of alumina have been implanted at room temperature with 110 keV57Fe+ at a dose of 1.2×1017 ions.cm?2. The analysis of the Conversion Electron Mössbauer Spectrum indicated that implantation introduces iron in alumina in three charge state: Fe2+ (two components), Fe4+ and Fe0 (metallic clusters). The evolution of the iron depth distribution during annealings in oxiding or in neutral atmosphere has been followed using the Rutherford backscattering spectroscopy. Up to 800°C the profile as well as the charge states of iron evolve very slowly. A drastic change occurs' for annealing temperature around 1000°C. The total amount of iron is distributed among α-Fe2O3 and α-(Fe1?x Al x )2O3 precipitates. Some scanning electron micrographs have allowed to locate these precipitates. For highest temperature anneals, up to 1600°C, only substitutional iron remain.  相似文献   

12.
Ge+ ions are implanted into fused silica glass at room temperature and a fluence of 1×10 17 cm-2 . The as-implanted samples are annealed in O2, N2 and Ar atmospheres separately. Ge0 , GeO and GeO2 coexist in the as-implanted and annealed samples. Annealing in different atmospheres at 600℃ leads each composite to change its content. After annealing at 1000℃, there remains some amount of Ge 0 in the substrates. However, the content of Ge decreases due to out-diffusion. After annealing in N2 , Si–N composite is formed. The absorption peak of GeO appears at 240 nm after annealing in O2 atmosphere, and a new absorption peak occurs at 418 nm after annealing in N2 atmosphere, which is attributed to the Si–N composite. There is no absorption peak appearing after annealing in Ar atmosphere. Transmission electron microscopic images confirm the formation of Ge nanoparticles in the as-implanted sample and GeO 2 nanoparticles in the annealed sample. In the present study, the GeO content and the GeO2 content depend on annealing temperature and atmosphere. Three photoluminescence emission band peaks at 290, 385 and 415 nm appear after ion implantation and they become strong with the increase of annealing temperature below 700℃, and their photoluminescences recover to the values of as-grown samples after annealing at 700℃. Optical absorption and photoluminescence depend on the annealing temperature and atmosphere.  相似文献   

13.
Zinc oxide (ZnO) nanostructures have been synthesized by the implantation of ZnO molecular ions into SiO2 followed by high temperature thermal annealing. 35 keV ZnO? ions were implanted to a fluence of 5×1016 ions/cm2 into SiO2 at room temperature (RT). The implanted sample was annealed in an oxygen environment to allow the growth of ZnO precipitates. In the as-implanted sample, Zn nanoparticles up to 4.5 nm in diameter were observed and were distributed throughout the implanted depth in the SiO2. The highest concentration of Zn from the implantation was at a depth of 25 nm. During annealing, Zn diffused into the substrate and combined with oxygen to form ZnO. ZnO nanostructures thus formed had diameters up to 8 nm, embedded in SiO2. Donor-bound exciton (D, X), acceptor-bound exciton (A, X), and donor–acceptor-pair (DAP) transitions were observed in low temperature photoluminescence (PL) measurements on an annealed sample. RT-PL measurement showed band-edge emission in the ultraviolet region with a full width at half maximum of 121 meV. Time-resolved PL measurements performed at 4 K revealed an excitonic lifetime of 160 ps.  相似文献   

14.
Abstract

Two LiNbO3 (X and Y cut) crystals from different companies were implanted by 3.0 MeV Er ions to a dose of 7.5 × 1014 ions/cm2 and 3.5 × 1014 ions/cm2 with different beam current densities, respectively. After annealing at 1060°C in air for 2 hours, one LiNbO3 sample was implanted by 1.5 MeV He ions to a dose of 1.5 × 1016 ions/cm2. The Rutherford backscattering/channeling and prism coupling method have been used to study the damage and optical properties in implanted LiNbO3. The results show: (1) the damage in LiNbO3 created by 3.0 MeV Er ions depends strongly on the beam current density; (2) after annealing at 1060°C in air for 2 hours, a good Er doped LiNbO3 crystal was obtained; (3) there is waveguide formation possible in this Er-doped annealed LiNbO3 after 1.5 MeV He ion implantation. It is suggested that annealing is needed to remove the damage created by MeV Er ions before the MeV He ion implantation takes place, to realize the waveguide laser for Er doped LiNbO3.  相似文献   

15.
Nitrogen ions were implanted in GaAs1−xPx (x=0.4; 0.65) at room temperature at various doses from 5×1012 cm−2 to 5×1015 cm−2 and annealed at temperatures from 600°C up to 950°C using a sputtered SiO2 encapsulation to investigate the possibility of creating isoelectronic traps by ion implantation. Photoluminescence and channeling measurements were performed to characterize implanted layers. The effects of damage induced by optically inactive neon ion implantation on photoluminescence spectrum were also investigated. By channeling measurements it was found that damage induced by nitrogen implantation is removed by annealing at 800°C. A nitrogen induced emission intensity comparable to the intensity of band gap emission for unimplanted material was observed for implanted GaAs0.6P0.4 after annealing at 850°C, while an enhancement of the emission intensity by a factor of 180 as compared with an unimplanted material was observed for implanted GaAs0.35P0.65 after annealing at 950°C. An anomalous diffusion of nitrogen atoms was found for implanted GaAs0.6P0.4 after annealing at and above 900°C.  相似文献   

16.
The defect structure of AlGaN/GaN superlattices and GaN layers grown through vapor-phase epitaxy from organometallic compounds is investigated using x-ray diffraction analysis before and after implantation with erbium ions at an energy of 1 MeV and a dose of 3 × 1015 cm?2, as well as after annealing. For a superlattice with a total thickness larger than the implantation depth, the satellites of the superlattice region strained under the action of ions disappear in the x-ray diffraction pattern after annealing at temperatures higher than 900°C. This suggests that the radiation-induced defects responsible for the positive deformation in the layer are annealed at these temperatures. However, annealing even at a temperature of 1050°C does not lead to complete recovery of the initial state and the positive deformation in the remaining regions is caused by residual defects. An analysis of the x-ray diffraction patterns demonstrates that, in samples with thin superlattices located at the depth corresponding to maximum radiation damage, the periodic structure that disappears after implantation at a dose of 3 × 1015 cm?2 is not recovered even after annealing at a temperature of 1050°C. This inference is confirmed by the results of examinations with an electron microscope.  相似文献   

17.
吴志永  刘克新  任晓堂 《中国物理 B》2010,19(9):97806-097806
Photoluminescence (PL) spectra of Si nanocrystals (NCs) prepared by 130 keV Si ions implantation onto SiO2 matrix were investigated as a function of annealing temperature and implanted ion dose. PL spectra consist of two PL peaks, originated from smaller Si NCs due to quantum confinement effect (QCE) and the interface states located at the surface of larger Si NCs. The evolution of number of dangling bonds (DBs) on Si NCs was also investigated. For hydrogen-passivated samples, a monotonic increase in PL peak intensity with the dose of implanted Si ions up to 3×1017 ions /cm2 is observed. The number of DBs on individual Si NC, the interaction between DBs at the surface of neighbouring Si NCs and their effects on the efficiency of PL are discussed.  相似文献   

18.
50 keV 64Zn+ ions to a dose of 5 × 1016 cm–2 are implanted into substrates of single-crystal n-type silicon. Then the samples are irradiated at room temperature with 167 MeV 132Xe26+ ions with a fluence ranging from 1 ×1012 up to 5 × 1014 cm–2. Changes in the structure and properties on the sample surface and in its body are studied by scanning electron microscopy, energy dispersive microanalysis, atomic force microscopy, time-of-flight secondary ion mass spectrometry, and photoluminescence.  相似文献   

19.
Pure iron foils were implanted with nitrogen ions at energy of 10 keV and with 1×1017N ions/cm2. Doses of pre-self-implantation were 5×1016 and 3.7×1016 17Fe ions/cm2 respectively, and the iron ion energy was 27 keV. A comparison of iron nitrides formed on surfaces with and without pre-self-implantation has been obtained. The results show that radiation damage apparently influences the formation of iron nitrides. The formation and transformation of nitrides after N implantation or after annealing can be explained by a model of implantation-induced transformation.  相似文献   

20.
The channeling technique has been used to investigate the properties of Bi-implanted Gap. Measurements of the crystal disorder for 100 keV room temperature implants indicate a damage vs dose curve corresponding to ~13000 displacements/ion in the linear region and saturation at ~1.5 × 1013 Bi ions/cm2. Annealing of the radiation damage has been observed and indicates two annealing steps at ~450°C for light damage and ~750°C for implants in the 1 × 1014/cm2 range. Difficulties associated with the thermal decomposition of the implanted area have been overcome with the use of SiO x coatings. The experimental details associated with the use of the SiO x layer and with the use of a C12 beam to obtain better depth and mass resolution in the backscattering spectrum are discussed. The lattice location measurements of the Bi impurity show ~50 per cent of the Bi atoms to be along the 〈110〉 string after a 900°C anneal for a 7.5 × 1013/cm2 implant. In addition, the spectra show ~25 per cent of the Bi atoms have diffused to the surface. Correlations of these lattice location results with measurements of the photoluminescent intensity of the GaP (Bi) isoelectronic trap show an agreement in trend with anneal temperature but indicate a factor of ~10 more substitutional ions in the channeling measurement as compared to the photoluminescence results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号