首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study mainly focuses hydrolysis reactions of uranium(VI) under an ambient atmosphere leading to colloid formation in near neutral solution using light scattering, UV–Vis and FTIR-ATR studies. UV–Vis and IR spectrum was recorded for uranyl solution at different pH range. U(VI) hydrolyzed colloids were detected and it was confirmed by the appearance of a band at 941 cm?1 in the IR spectra. Light scattering measurements were performed on colloidal U(VI) solutions formed at pH range of 7–8. The average particle diameter was determined as 32–36 nm using dynamic light scattering. Well defined colloidal species are formed with no considerable change in particle size with increasing U(VI) concentration. The weight average molecular weight of colloidal species was predicted as 763 Da by Debye plot. The second virial coefficient (A2) was found to be ?0.1139 ml g?1 Da. The present study confirms that behaviour of U(VI) contradicts conventional Zr(IV), Th(IV) and Pu(IV) solution chemistry. U(VI) polymerization is less extensive and in neutral solutions it forms only oligomers with 2–3 uranyl units.  相似文献   

2.
The extraction behavior of Pu(III), Pu(IV), Np(IV) and Np(V) with di(chlorophenyl)-dithiophosphinic acid (DCPDTPA) in toluene from nitric acid solutions was studied systematically. In aqueous solution with high nitric acid concentration, the extraction capability (represented by distribution ratio D) for Pu and Np in different valences with DCPDTPA comes as D Np(IV) > D Pu(IV) > D Np(V) > D Pu(III). A new radiochemical procedure for Np/Pu separation based on DCPDTPA extraction was proposed and tested with simulated samples. The recoveries of Np and Pu are as high as 80 % after the whole separation procedure, with the decontamination factor of trivalent lanthanide fission product element (e.g. Eu) greater than 1.5 × 104. The decontamination factor of Pu–Np is 2.0 × 103, while the decontamination factor of Np–Pu is greater than 4.8 × 103 after additional purification.  相似文献   

3.
Layer‐by‐layer assemblies consisting of alternating layers of nitrilotris(methylene)triphosphonic acid (NTMP), a polyfunctional corrosion inhibitor, and zirconium(IV) were prepared on alumina. In particular, a nine‐layer (NTMP/Zr(IV))4NTMP stack could be constructed at room temperature, which showed a steady increase in film thickness throughout its growth by spectroscopic ellipsometry up to a final thickness of 1.79 ± 0.04 nm. At higher temperature (70 °C), even a two‐layer NTMP/Zr(IV) assembly could not be prepared because of etching of the alumina substrate by the heated Zr(IV) solution. XPS characterization of the layer‐by‐layer assembly showed a saw tooth pattern in the nitrogen, phosphorus, and zirconium signals, where the modest increases and decreases in these signals corresponded to the expected deposition and perhaps removal of NTMP and Zr(IV). Time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) confirmed the attachment of the NTMP molecule to the surface through PO?, PO2?, PO3?, and CN? signals. Increasing attenuation of the Al signal from the substrate after deposition of each layer was observed by both XPS and ToF‐SIMS. Essentially complete etching of the alumina by the heated Zr(IV) solution was confirmed by spectroscopic ellipsometry, XPS, and ToF‐SIMS. Atomic force microscopy revealed that all the films were smooth with Rq roughness values less than 0.5 nm. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
Distribution of Pu(IV) and Pu(V) oxidation states at trace initial concentrations (10?10–10?11 mol L?1) was studied in a liquid- and solid-phase of natural clay and goethite systems. Experiments showed an increase in the concentration of Pu(III) up to 11% at pH 5 in solids of the natural clay ?0.1 mol L?1 NaNO3 system containing Pu(IV) after 7-day contact. A kinetic sorption/reduction experiment with goethite suspensions (0.01 mol L?1 NaNO3 containing Pu(V)) indicated the presence of Pu(III) in the solids up to 15%.  相似文献   

5.
To understand the separation behavior of Zr(IV) in the partitioning process for high level liquid waste, a silica-based macroporous adsorbent (TODGA/SiO2-P) was prepared by impregnating N,N,N′,N′-tetraoctyl-3-oxapentane-1,5-diamide (TODGA) into a macroporous silica/polymer composite particles support (SiO2-P). Adsorption and desorption behavior of Zr(IV) from nitric acid solution onto silica-based TODGA/SiO2-P adsorbent were investigated by batch experiment. It was found that TODGA/SiO2-P showed strong adsorption affinity to Zr(IV) and this adsorption process reached equilibrium state around 6 h at 298 K. Meanwhile, HNO3 concentration had no significant effect on the adsorption of Zr(IV) above 1 M. From calculated thermodynamic parameters, this adsorption process could occur spontaneously at the given temperature and was confirmed to be an exothermic reaction. This adsorption process could be expressed by Langmuir monomolecular layer adsorption mode and the maximum adsorption capacity were determined to be 0.283 and 0.512 mmol/g for Zr(IV) at 298 and 323 K, respectively. In addition, more than 90 % of Zr(IV) adsorbed onto adsorbent could be desorbed with 0.01 M diethylenetriamine pentaacetic acid solution within 24 h at 298 K.  相似文献   

6.
《Analytical letters》2012,45(17):1963-1972
Abstract

A spectromeric study of the reaction of the Zr(IV) ions with Mandelazo I was carried out. Absorption spectra revealed that the maximum absorption of the zirconium compound appears at a wavelength (316 nm) different from the maxima of the reagent (253 and 390 nm). Beer-Lambert law is followed for zirconium concentrations of the order of 8.8x 10?5 M (i.e. 8 μg Zr (IV)/mL). Possible interferences of ions such as Be(II), Cu(II), Zn(II), Al(III), Th(IV), U(VI), Mn(II), Fe(III), Co(II) and Ni(II) were investigated in connection with some masking agents such as SO4 2- and C2O4 2-. Also, the solid state Zr(IV)-Mandelazo I compound was prepared and characterized by nitrogen and thermogravimetric analyses.  相似文献   

7.
Sorption of Am and Pu isotopes to bottom sediments of the Baltic Sea has been studied under natural and laboratory conditions. Data obtained from sequential extraction, sorption of Am(III), Pu(IV) and Pu(V) as well as oxidation state distribution experiments have shown that Pu(V) sorption mechanism includes a very fast Pu(V) reduction (reaction rate ≤ 2.33 × 10?3 s?1) to Pu(IV) by humic substances and/or by Fe(II) to Pu(IV) and partly to Pu(III). Following reduction Pu isotopes were bound to various components of bottom sediments via ion exchange and surface complexation reactions and a slow incorporation into the crystalline structure of Fe minerals. Kinetics experiments showed that the sorption of Pu(V), Pu(IV) and Am(III) to bottom sediments from natural seawater was controlled by the inert layer diffusion process.  相似文献   

8.
Zirconiumphthalocyanines: Synthesis and Properties of Chloride Ligated Phthalocyanines of Ter- and Quadrivalent Zirconium; Crystal Structure of cis-Di(triphenylphosphine)iminium-tri(chloro)phthalocyaninato(2–)zirconate(IV)-di(dichloromethane) cis-Di(chloro)phthalocyaninato(2–)zirconium(IV) is obtained by the reaction of ZrCl4 with phthalodinitrile in 1-chloronaphthaline at 230°C. It reacts with molten di(triphenylphosphine)iminiumchloride ((PNP)Cl) yielding cis-di(triphenylphosphine)iminium-tri(chloro)phthalocyaninato(2-)zirconate(IV), cis-(PNP)[ZrCl3Pc2?]. This crystallizes with two molecules of dichloromethane in the monoclinic space group P21/n with the lattice constants a = 15.219(4) Å, b = 20.262(10) Å, c = 20.719(4) Å, b? = 93.46(2)°, Z = 4. The seven coordinated Zr atom is situated in a “square base-trigonal cap” polyhedron. The plane of the three chlorine atoms runs parallel to the plane of the four isoindole nitrogen atoms Niso. The Zr–Cl distances range from 2.49 to 2.55 Å, the Zr? Niso distances from 2.26 to 2.29 Å. Due to ion packing effects the Pc2? ligand shows an asymmetrical convex distortion. The PNP cation adopts the bent conformation. The P? N? P angle is 139°, the P? N distance 1.58 Å. As confirmed by the cyclovoltammograms cis-(PNP)[ZrCl3Pc2?] is oxidized (anodically or chemically by Cl2) to yield cis-tri(chloro)phthalocyaninato(1–)zirconium(IV) and reduced (cathodically or chemically by [BH4]?) yielding chlorophthalocyaninato(2–)zirconium(III) and cis-di(triphenylphosphine)iminium-di(chloro)phthalocyaninato(2–)zirconate(III). The optical spectra show the typical π–π*-transitions of the Pc2? resp. Pc? ligand not much affected by the different states of oxidation and coordination of zirconium. The same is true for the vibrational spectra of the Pc2? resp. Pc? ligand. In the f.i.r. spectra between 350 and 150 cm?1 the asym. and sym. Zr? Cl stretching and Cl? Zr? Cl deformation vibration as well as the asym. Zr? N stretching vibration of the [ZrClxN4] skeleton (x = 1–3) is assigned.  相似文献   

9.
Electrolytes with high lithium-ion conductivity, better mechanical strength and large electrochemical window are essential for the realization of high-energy density lithium batteries. Polymer electrolytes are gaining interest due to their inherent flexibility and nonflammability over conventional liquid electrolytes. In this work, lithium garnet composite polymer electrolyte membrane (GCPEM) consisting of large molecular weight (Wavg ~?5?×?106) polyethylene oxide (PEO) complexed with lithium perchlorate (LiClO4) and lithium garnet oxide Li6.28Al0.24La3Zr2O12 (Al-LLZO) is prepared by solution-casting method. Significant improvement in Li+ conductivity for Al-LLZO containing GCPEM is observed compared with the Al-LLZO free polymer membrane. Maximized room temperature (30 °C) Li+ conductivity of 4.40?×?10?4 S cm?1 and wide electrochemical window (4.5 V) is observed for PEO8/LiClO4?+?20 wt% Al-LLZO (GCPEM-20) membrane. The fabricated cell with LiCoO2 as cathode, metallic lithium as anode and GCPEM-20 as electrolyte membrane delivers an initial charge/discharge capacity of 146 mAh g?1/142 mAh g?1 at 25 °C with 0.06 C-rate.  相似文献   

10.
The present study focuses on the proton-conducting polymer electrolytes; poly (N-vinyl pyrrolidone)–ammonium thiocyanate and poly (N-vinyl pyrrolidone)–ammonium acetate prepared by solution casting technique. The XRD analysis indicates the amorphous nature of the polymer electrolytes. The Raman spectra of the C=O vibration of pure polymer PVP at 1,663 cm?1 has been appeared as doublet in the polymer electrolytes. The introduction of this new peak in the salt-doped polymer electrolytes may be due to interaction of the cation with the polymer. The room temperature ionic conductivity σ 303κ has been found to be high, 1.7?×?10?4 S cm?1 for 80 mol% PVP–20 mol% NH4SCN and 1.5?×?10?6 S cm?1 for 75 mol% PVP–25 mol% CH3COONH4. The polymer electrolytes have been tested for their application in Zn–air battery.  相似文献   

11.
Kinetics of sorption of Pu(IV) by smectite-rich clay has been studied at varying metal ion concentrations. Different concentrations were achieved using different isotopes of Pu, namely, 239Pu, 238Pu and 237Pu. 237Pu was produced by alpha induced reaction on 235U, followed by radiochemical separation of Pu from irradiated U3O8 target. The concentrations used are above and below the solubility of Pu(IV) under neutral pH conditions, thereby, indicating the mechanism of sorption reactions of Pu(IV) in typical laboratory experiments and field level observations. Kinetics of Pu(IV) at 10?13 M concentration was found to be fast whereas at higher metal concentration the rate is governed by a slow step, indicating the role of formation of Pu(IV) polymeric species at the sorbent surface.  相似文献   

12.
A new zirconium vanadate (Zr–V) ion-exchanger was synthesized and characterized for fast and selective separation procedure of 90Y from 89Sr. The method was based on 90Y(III) sorption from aqueous HCl solution containing 89Sr(II) onto Zr–V gel exchanger. The kinetics of Y(III) sorption from HCl solution by Zr–V exchanger was subjected to Weber–Morris, Lagergren, Bhattacharya and Venkobachar, and Bt models. Initially, the uptake of Y(III) onto the exchanger was fast followed by kinetically first-order sorption with an overall rate constant, K Lager = (3.55 ± 0.03) × 10?4 min?1. Film and intraparticle transport are the two steps that might influence Y(III) sorption. The negative values of ΔG of 90Y retention dictate that, the process is a spontaneous. The negative values of ΔH and ΔS reflect the exothermic nature of 90Y(IIsorption and the random uptake of 90Y(III) onto Zr–V sorbent. Zr–V exchanger offers unique advantages of 90Y(III) retention over conventional solid sorbents in rapid and effective separation of traces of 90Y(III) from Sr. The exchanger was successfully packed in column for an effective separation of 90Y.  相似文献   

13.
A new zinc complex based on a tetradentate N,N,O,O-type coumarin salen ligand (H2L) was prepared and characterized by elemental analysis, thermogravimetric analysis (TGA), and FT-IR, UV–vis and 1H NMR spectroscopy. The complex [Zn(L)(H2O)]·H2O was active in the ring opening polymerization (ROP) of ε-caprolactone under solvent-free conditions, producing polycaprolactone (PCL) with a molecular weight up to 17,700 g mol?1 and a narrow molecular weight distribution. 1H NMR analysis showed that the PCL obtained was mainly linear, having hydroxymethylene groups in the chain ends. Differential scanning calorimetry (DSC) showed that the polymer had high crystallinity (61%) and that TGA had a decomposition temperature above 300 °C.  相似文献   

14.
Translucent, homogeneous, and monolithic gels of the [(ZrO2)0.92(Y2O3)0.08]1?x(TiO2)x system, where x = 0, 0.05, 0.08, and x = 0.10 (mol), have been reliably obtained, for the first time, by a sol–gel route from zirconium (IV) n-propoxide (Zr(OPrn)4), yttrium acetate hydrate and titanium (IV) isopropoxide (Ti(OPri)4). Chemical modification of both alkoxides, zirconium (IV) n-propoxide and titanium (IV) isopropoxide, by acetic acid allows us to change the hydrolysis and condensation behavior of them. Their modification implies the formation of chelating and bridging acetates avoiding the formation of precipitates. The line width and some shoulders in the FT-IR spectra of the solution, resulting of the mixture of the precursors and the catalysts, during the hydrolysis reaction suggest that both coordinations, chelating and bridging, should occur. Furthermore, the separation of the steps of hydrolysis and condensation allows to achieve conditions under which hydrolysis of the molecular precursor is slowed, whereas condensation is promoted under chemical reversibility to ensure a crystalline product at low calcination temperatures. In addition, the formation of metalloxane bondings (M–O–M’, M and M’ = Zr, Y, and Ti) has been confirmed by FT-IR throughout the sol–gel process. At about 630 °C, the crystallization of yttria stabilized zirconia (YSZ) for x = 0 or a titania-doped yttria stabilized zirconia solid solution (Ti-doped YSZ) for x = 0.05, 0.08, and 0.10 is detected by DTA-TG. By SEM-EDX and TEM-EDX the presence of Zr, Y, and Ti elements, in the adequate proportions according to the nominal compositions, has been proven in both dried and calcined gels.  相似文献   

15.
TG, DTG, DTA, DDTA and ΔH analyses of zirconium(IV) acetylacetonate, Zr(C6H7O2)4 (= I), were performed in a helium atmosphere with a Netzsch Thermal Analyser STA 429. The enthalpies of the main steps of transformation were computed to be +42.182 J·g?1 and ?21.113 J·g?1. Pure I is thermally stable up to about 199°C in He gas, and melting too occurs at about 199°C. Four well-defined decomposition steps were observed over the range between ambient and 600 °C, accompanied by a weight loss of 61.59%. The final product contained pure ZrO. The unique shapes of the TG and DTA curves could be used for the identification of I.  相似文献   

16.
In this paper, a highly selective Sudan IV molecularly imprinted polymer was synthesized by surface molecular imprinting technique in combination with a sol?Cgel process using ??-aminopropyl triethoxysilane as functional monomer, tetraethoxysilane as cross-linker and activated silica gel as support material. The imprinted polymer was characterized by FT-IR spectra, scanning electron micrograph and adsorption experiments and it was exhibited good recognition and selective ability, offered a faster rate for the adsorption of Sudan IV. Using the imprinted material as sorbent, a solid-phase extraction coupled with high-performance liquid chromatography method for determination of trace Sudan IV was presented. The detection limit (S/N = 3) was 25.2 ng L?1, and the RSD for five replicate was 2.86%. With a loading flow rate of 2.5 mL min?1 for loading 30 mL, an enrichment factor of 104 was achieved. This method was applied for extraction and determination of chilli powder and duck egg samples with good recoveries ranging from 85.3 to 98.1%.  相似文献   

17.
The preparation and characterization of blended solid polymer electrolyte 49% poly(methyl methacrylate)-grafted natural rubber (MG49):poly(methyl methacrylate) (PMMA) (30:70) were carried out. The effect of lithium tetrafluoroborate (LiBF4) concentration on the chemical interaction, structure, morphology, and room temperature conductivity of the electrolyte were investigated. The electrolyte samples with various weight percentages (wt.%) of LiBF4 salt were prepared by solution casting technique and characterized by Fourier transform infrared spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and electrochemical impedance spectroscopy. Infrared analysis demonstrated that the interaction between lithium ions and oxygen atoms occurred at symmetrical stretching of carbonyl (C=O) (1,735 cm?1) and asymmetric deformation of (O–CH3) (1,456 cm?1) via the formation of coordinate bond on MMA structure in MG49 and PMMA. The reduction of MMA peaks intensity at the diffraction angle, 2θ of 29.5° and 39.5° was due to the increase in weight percent of LiBF4. The complexation occurred between the salt and polymer host had been confirmed by the XRD analysis. The semi-crystalline phase of polymer host was found to reduce with the increase in salt content and confirmed by XRD analysis. Morphological studies by SEM showed that MG49 blended with PMMA was compatible. The addition of salt into the blend has changed the topological order of the polymer host from dark surface to brighter surface. The SEM analyses supported the enhancement of conductivity with the addition of salt. The conductivity increased drastically from 2.0 to 3.4?×?10?5 S cm?1 with the addition of 25 wt.% of salt. The increase in the conductivity was due to the increasing of the number of charge carriers in the electrolyte. The conductivity obeys Arrhenius equation in higher temperature region from 333 to 373 K with the pre-exponential factor σ o of 1.21?×?10?7 S cm?1 and the activation energy E a of 0.46 eV. The conductivity is not Arrhenian in lower temperature region from 303 to 323 K.  相似文献   

18.
A flow injection-based electrochemical detection system coupled to a solid-phase extraction column was developed for the determination of trace amounts of plutonium in low-active liquid wastes from spent nuclear-fuel reprocessing plants. The oxidation state of plutonium in a sample solution was adjusted to Pu(VI) by the addition of silver(II) oxide. A sample solution was made up in 3 mol L?1 HNO3 and loaded onto a column packed with UTEVA® with 3 mol L?1 HNO3 as the carrier. Plutonium(VI) was adsorbed onto the resin, and interfering elements were removed by rinsing the column with 3 mol L?1 HNO3. Subsequently, the adsorbed Pu(VI) was eluted with 0.01 mol L?1 HNO3, and then introduced directly into the flow-through electrolysis cell with boron-doped diamond electrode. The eluted Pu(VI) was detected by an electrochemical amperometric method at a working potential of 0.1 V (vs. Ag/AgCl). The current produced on reduction of Pu(VI) was continuously monitored and recorded. The plutonium concentration was calculated from the relationship between the peak area and concentration of plutonium. The relative standard deviation of ten analyses was 1.1% for a plutonium solution of 25 μg L?1 containing 50 ng of Pu. The detection limit calculated from three-times the standard deviation was 0.82 μg L?1 (1.6 ng of Pu).  相似文献   

19.
Three novel complexes of zirconium(IV) are prepared and characterized by single crystal X-ray diffraction: zirconium(IV) pivaloyltrifluoroacetonate Zr(ptac)4, zirconium(IV) trifluoroacetylacetonate Zr(tfac)4, and zirconium(IV) hexafluoroacetylacetonate Zr(hfac)4. Crystal data for C32H40F12ZrO8: a = 19.9842(6) Å, b = 11.8417(3) Å, c = 16.4831(5) Å; β = 95.2880(10)°, monoclinic, space group Cc, Z = 4, d calc = 1.491 g/cm3, R = 0.061. Crystal data for C20H16F12ZrO8: a = 21.5063(15) Å, b = 7.9511(5) Å, c = 16.0510(10) Å; β = 113.736(4)°, monoclinic, space group C2/c, Z = 4, d calc = 1.860 g/cm3, R = 0.047. Crystal data for C20H4F24ZrO8: a = 15.3533(13) Å, b = 20.2613(15) Å, c = 19.6984(17) Å; β = 95.828(2)°, monoclinic, space group P21/c, Z = 2, d calc = 2.004 g/cm3, R = 0.078. All the structures are molecular and include isolated mononuclear Zr(β-dik)4 complex molecules. Coordination environment of zirconium atom is made by eight oxygen atoms of four β-diketonates; the coordination polyhedron is an almost regular square antiprism. The Zr-O distances fall within 2.14–2.23 Å. Complexes in the structures are joined by van der Waals interactions. Using the structural data, the van der Waals energies of crystal lattices of the studied compounds are calculated by the atom-atom potential method.  相似文献   

20.
Summary: Microwave irradiation was used for the amidation of a nitrile with an amine with a freshly prepared zirconium-based heterogeneous catalyst. Microwave irradiation selectively heats the catalyst which enhances its activity as compared to conventional heating. The difference between microwave heating and conventional heating disappears when Zr(OH)4 is used instead of ZrO2, indicating a microwave-induced shift in the hydrolysis equilibrium, i.e. the distribution of ZrO2, ZrO(OH)2 and Zr(OH)4, of the zirconium-based catalyst. The catalyst efficiently catalyzes the amidation of valeronitrile with n-hexylamine with conventional as well as with microwave heating. Zr(OH)4 was also used for the polymerization of 6-aminocapronitrile using conventional and microwave heating. With both heating methods a relatively low molecular weight polymer with a Mn of 4000 g/mol was obtained in a sealed vessel, due to the presence of water and ammonia. A post-polymerization step under microwave irradiation, with active removal of water and ammonia shifts Mn to 10000 g/mol. Pressure decrease to facilitate water removal resulted in products with higher molecular weights. A pressure reduction to 50 Pa and operation in an argon atmosphere at 230 °C resulted in nylon-6 with a Mn of 65000 in rather short reaction times. Lower pressures led to end-biting and evaporation of the volatile ε-caprolactam at 230 °C. As a consequence the resulting product has than a much lower molecular weight. The combination of a heterogeneous zirconium based catalyst and microwave heating is promising for process intensification for nylon-6 production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号