首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simulation study of liquid drops on inclined surfaces is performed in order to understand the evolution of drop shapes, contact angles, and retention forces with the tilt angle. The simulations are made by means of a method recently developed for dealing with contact angle hysteresis in the public-domain Surface Evolver software. The results of our simulations are highly dependent on the initial contact angle of the drop. For a drop with an initial contact angle equal to the advancing angle, we obtain results similar to those of experiments in which a drop is placed on a horizontal surface that is slowly tilted. For drops with an initial contact angle equal to the mean between the advancing and the receding contact angles, we recover previous results of finite element studies of drops on inclined surfaces. Comparison with experimental results for molten Sn-Ag-Cu on a tilted Cu substrate shows excellent agreement.  相似文献   

2.
We investigate contact angle hysteresis on chemically patterned and superhydrophobic surfaces, as the drop volume is quasistatically increased and decreased. We consider both two (cylindrical drops) and three (spherical drops) dimensions using analytical and numerical approaches to minimize the free energy of the drop. In two dimensions, we find, in agreement with other authors, a slip, jump, stick motion of the contact line. In three dimensions, this behavior persists, but the position and magnitude of the contact line jumps are sensitive to the details of the surface patterning. In two dimensions, we identify analytically the advancing and receding contact angles on the different surfaces, and we use numerical insights to argue that these provide bounds for the three-dimensional cases. We present explicit simulations to show that a simple average over the disorder is not sufficient to predict the details of the contact angle hysteresis and to support an explanation for the low contact angle hysteresis of suspended drops on superhydrophobic surfaces.  相似文献   

3.
A liquid droplet sitting on a hydrophobic surface with a cosine wave-like square-array pattern in the Wenzel state is simulated by using the Surface Evolver to determine the contact angle. For a fixed drop volume, multiple metastable states are obtained at two different surface roughnesses. Unusual and non-circular shape of the three-phase contact line of a liquid droplet sitting on the model surface is observed due to corrugation and distortion of the contact line by structure of the roughness. The contact angle varies along the contact line for each metastable state. The maximum and minimum contact angles among the multiple metastable states at a fixed viewing angle correspond to the advancing and the receding contact angles, respectively. It is interesting to observe that the advancing/receding contact angles (and contact angle hysteresis) are a function of viewing angle. In addition, the receding (or advancing) contact angles at different viewing angles are determined at different metastable states. The contact angle of minimum energy among the multiple metastable states is defined as the most stable (equilibrium) contact angle. The Wenzel model is not able to describe the contact angle along the three-phase contact line. The contact angle hysteresis at different drop volumes is determined. The number of the metastable states increases with increasing drop volume. Drop volume effect on the contact angles is also discussed.  相似文献   

4.
We introduce a phase field model of wetting of surfaces by sessile drops. The theory uses a two-dimensional non-conserved phase field variable to parametrize the Gibbs free energy of the three-dimensional system. Contact line tension and contact angle hysteresis arise from the gradient term in the free energy and the kinetic coefficient respectively. A significant advantage of this approach is in the constitutive specification of hysteresis. The advancing and receding angles of a surface, the liquid-vapor interfacial energy and three-phase line tension are the only required constitutive inputs to the model. We first simulate hysteresis on a smooth chemically homogeneous surface using this theory. Next we show that it is possible to study heterogeneous surfaces whose component surfaces are themselves hysteretic. We use this theory to examine the wetting of a surface containing a circular heterogeneous island. The contact angle for this case is found to be determined solely by the material properties at the contact line in accord with recent experimental data.  相似文献   

5.
A simple model is proposed to simulate contact angle hysteresis in drops on a planar surface. The model is based on assuming a friction force acting on the triple contact line in such a way that the contact line keeps fixed for contact angles comprised between the advancing angle and the receding one and is allowed to move in order to avoid angles outside this interval. The model is straightforwardly applied to axisymmetric drops for which a simple solution of the Young-Laplace equation can be obtained. A variation of the method has also been implemented for nonaxisymmetric drops by resorting to the public-domain "Surface Evolver" software. Comparison with experiments shows the excellent performance of the model.  相似文献   

6.
The effect of blocking the shift of the contact surface between a liquid drop and a solid body is discussed. The model proposed in (S. D. Iliev, 1997, J. Colloid Interface Sci., 194, 287) is discussed. This equilibrium model considers the resistance to shift by adding an energy to the classical capillary equilibrium model. It is shown that the set of equilibrium shapes of static droplets is effectively modeled. Studying the set of equilibrium axisymmetric drops, located on a horizontal surface, the analysis proves that the contact angle hysteresis is described without introducing a dependence between the resistance-to-shift coefficients and the drop volume and Bond's number. A possibility of realizing a stick-slip motion and division of the equilibrium drops is studied, too. It is shown that the equilibrium model describes also the set of equilibrium nonaxisymmetric static drops. The everyday experience to obtain the various nonaxisymmetric drop shapes by the deforming of contact line with a thin rod is numerically modeled. Copyright 1999 Academic Press.  相似文献   

7.
Contact angle hysteresis of a sessile drop on a substrate consists of continuous invasion of liquid phase with the advancing angle (θ(a)) and contact line pinning of liquid phase retreat until the receding angle (θ(r)) is reached. Receding pinning is generally attributed to localized defects that are more wettable than the rest of the surface. However, the defect model cannot explain advancing pinning of liquid phase invasion driven by a deflating bubble and continuous retreat of liquid phase driven by the inflating bubble. A simple thermodynamic model based on adhesion hysteresis is proposed to explain anomalous contact angle hysteresis of a captive bubble quantitatively. The adhesion model involves two solid–liquid interfacial tensions (γ(sl) > γ(sl)′). Young’s equation with γ(sl) gives the advancing angle θ(a) while that with γ(sl)′ due to surface rearrangement yields the receding angle θ(r). Our analytical analysis indicates that contact line pinning represents frustration in surface free energy, and the equilibrium shape corresponds to a nondifferential minimum instead of a local minimum. On the basis of our thermodynamic model, Surface Evolver simulations are performed to reproduce both advancing and receding behavior associated with a captive bubble on the acrylic glass.  相似文献   

8.
In this work, we investigate the configuration of the contact line of a water drop lying on an ultrahydrophobic post surface using the numerical algorithm Surface Evolver. For the special situation of Cassie wetting, we propose a modified definition of the contact line as the line in space where the meniscus starts to curve upward out of the plane of the composite surface. In our simulations, it is found that the contact line is very strongly distorted, indicating a strong tendency of the drop to "ball up" in those areas where it is not in contact with the solid surface. The distortion of the contact line corresponds to a pronounced deformation of the liquid-air interface around the base of the drop. We discuss the consequences of this distortion for the definition and practical measurement of the contact angle on ultrahydrophobic surfaces.  相似文献   

9.
The spreading of liquid drops on surfaces corrugated with micrometer-scale parallel grooves is studied both experimentally and numerically. Because of the surface patterning, the typical final drop shape is no longer spherical. The elongation direction can be either parallel or perpendicular to the direction of the grooves, depending on the initial drop conditions. We interpret this result as a consequence of both the anisotropy of the contact line movement over the surface and the difference in the motion of the advancing and receding contact lines. Parallel to the grooves, we find little hysteresis due to the surface patterning and that the average contact angle approximately conforms to Wenzel's law as long as the drop radius is much larger than the typical length scale of the grooves. Perpendicular to the grooves, the contact line can be pinned at the edges of the ridges, leading to large contact angle hysteresis.  相似文献   

10.
Partial wetting of chemically heterogeneous substrates is simulated. Three-dimensional sessile drops in equilibrium with smooth surfaces supporting ordered chemical patterns are considered. Significant features are observed as a result of changing the drop volume. The number of equilibrated drops is found either to remain constant or to increase with growing drop volume. The shape of larger drops appears to approach that of a spherical cap and their three-phase contact line seems, on a larger scale, more circular in shape than that of smaller drops. In addition, as the volume is increased, the average contact angle of drops whose free energy is lowest among all equilibrium-shaped drops of the same volume appears to approach the angle predicted by Cassie. Finally, contrary to results obtained with two-dimensional drops, contact angle hysteresis observed in this system is shown to exhibit a degree of volume dependence in the advancing and receding angles. Qualitative differences in the wetting behavior associated with the two different chemical patterns considered here, as well as differences between results obtained with two-dimensional and three-dimensional drops, can possibly be attributed to variations in the level of constraint imposed on the drop by the different patterns and by the dimensionality of the system.  相似文献   

11.
The shape and contact angles of drops on curved surfaces is experimentally investigated. Image processing, spline fitting and numerical integration are used to extract the drop contour in a number of cross-sections. The three-dimensional surfaces which describe the surface-air and drop-air interfaces can be visualized and a simple procedure to determine the equilibrium contact angle starting from measurements on curved surfaces is proposed. Contact angles on flat surfaces serve as a reference term and a procedure to measure them is proposed. Such procedure is not as accurate as the axisymmetric drop shape analysis algorithms, but it has the advantage of requiring only a side view of the drop-surface couple and no further information. It can therefore be used also for fluids with unknown surface tension and there is no need to measure the drop volume. Examples of application of the proposed techniques for distilled water drops on gemstones confirm that they can be useful for drop shape analysis and contact angle measurement on three-dimensional sculptured surfaces.  相似文献   

12.
The sliding behavior of liquid droplets on inclined Langmuir-Blodgett surfaces was investigated. The critical sliding angle defined as the tilt angle of the surface at which the drop slides down as well as the advancing and receding contact angles was measured for five different liquids on five surfaces. In addition, the contact line geometry was analyzed at critical sliding angle. The experimental relationship between the surface tension forces resulting from contact angle hysteresis and the weight of the drop was compared to theoretical predictions. Even though the shape of the drop bases was found as skewed ellipses, a model assuming parallel-sided elongated drops is shown to describe reasonably the experimental values. This result probably indicates the main influence of the capillary forces at the rear and front edges of the drop with respect to that exerted on the lateral sides.  相似文献   

13.
The shapes and energies of drops on substrates patterned with either holes or posts are computed using Surface Evolver software. The holes and posts are cylindrical in shape and distributed in a 6-fold symmetric pattern. The wetting conditions are such that the liquid does not fill the holes and the interface between the drop and the substrate is composite, i.e., partly solid/liquid and partly liquid/vapor. The sequence of stable drop configurations with increasing volume is analyzed and provides, in part, an explanation for superhydrophobic drop spreading.  相似文献   

14.
Contact angle hysteresis, drop shape, and drop retention were studied with a tiltable plane. Contact liquids were water and ethylene glycol. Four polymers and silicon wafers were used as substrates. When the plane was inclined, the shape of drops distorted, exhibiting advancing and receding contact angles. Drops remained stationary until a critical angle of tilt was exceeded, and then they began to move. The difference in the advancing and receding contact angles, or contact angle hysteresis, ranged from 9° to 66°, depending on the liquid and the substrate. Roughness did not seem to influence the hysteresis as much as the chemical nature of the surfaces. Elongation and back-to-front asymmetry were greater on surfaces with high hysteresis. We found a linear correlation between the aspect ratio of drops and their contact angle hysteresis. Also, the retentive force increased with elongation of the drops.  相似文献   

15.
In thermodynamic equilibrium, the contact angle is related by Young's equation to the interfacial energies. Unfortunately, it is practically impossible to measure the equilibrium contact angle. When for example placing a drop on a surface its contact angle can assume any value between the advancing Θa and receding Θr contact angles, depending on how the drop is placed. Θa − Θr is called contact angle hysteresis. Contact angle hysteresis is essential for our daily life because it provides friction to drops. Many applications, such as coating, painting, flotation, would not be possible without contact angle hysteresis. Contact angle hysteresis is caused by the nanoscopic structure of the surfaces. Here, we review our current understanding of contact angle hysteresis with a focus on water as the liquid. We describe appropriate methods to measure it, discuss the causes of contact angle hysteresis, and describe the preparation of surfaces with low contact angle hysteresis.  相似文献   

16.
Surface roughness amplifies the water-repellency of hydrophobic materials. If the roughness geometry is, on average, isotropic then the shape of a sessile drop is almost spherical and the apparent contact angle of the drop on the rough surface is nearly uniform along the contact line. If the roughness geometry is not isotropic, e.g., parallel grooves, then the apparent contact angle is no longer uniform along the contact line. The apparent contact angles observed perpendicular and parallel to the direction of the grooves are different. A better understanding of this problem is critical in designing rough superhydrophobic surfaces. The primary objective of this work is to determine the mechanism of anisotropic wetting and to propose a methodology to quantify the apparent contact angles and the drop shape. We report a theoretical and an experimental study of wetting of surfaces with parallel groove geometry.  相似文献   

17.
Ratcheting motion of liquid drops on gradient surfaces   总被引:2,自引:0,他引:2  
The motions of liquid drops of various surface tensions and viscosities were investigated on a solid substrate possessing a gradient of wettability. A drop of any size moves spontaneously on such a surface when the contact angle hysteresis is negligible; but it has to be larger than a critical size in order to move on a hysteretic surface. The hysteresis can, however, be reduced or eliminated with vibration that allows the drop to sample various metastable states, thereby setting it to the path of global energy minima. Significant amplification of velocity is observed with the frequency of forcing vibration matching the natural harmonics of drop oscillation. It is suggested that the main cause for velocity amplification is related to resonant shape fluctuation, which can be illustrated by periodically deforming and relaxing the drop at low frequencies.  相似文献   

18.
An optical technique based on the reflectivity measurements of a thin film was used to experimentally study the spreading, evaporation, contact line motion, and thin film characteristics of drops consisting of a water-surfactant (polyalkyleneoxide-modified heptamethyltrisiloxane, called superspreader) solution on a fused silica surface. On the basis of the experimental observations, we concluded that the surfactant adsorbs primarily at the solid-liquid and liquid-vapor interfaces near the contact line region. At equilibrium, the completely wetting corner meniscus was associated with a flat adsorbed film having a thickness of approximately 31 nm. The calculated Hamaker constant, A = -4.47 x 10(-)(20) J, shows that this thin film was stable under equilibrium conditions. During a subsequent evaporation/condensation phase-change process, the thin film of the surfactant solution was unstable, and it broke into microdrops having a finite contact angle. The thickness of the adsorbed film associated with the drops was lower than that of the equilibrium meniscus. The drop profiles were experimentally measured and analyzed during the phase-change process as the contact line advanced and receded. The apparent contact angle, the maximum concave curvature near the contact line region, and the convex curvature of the drop increased as the drop grew during condensation, whereas these quantities decreased during evaporation. The position of the maximum concave curvature of the drop moved toward the center of the drop during condensation, whereas it moved away from the center during evaporation. The contact line velocity was correlated to the observed experimental results and was compared with the results of the drops of a pure alcohol. The experimentally obtained thickness profiles, contact angle profiles, and curvature profiles of the drops explain how the surfactant adsorption affects the contact line motion. We found that there was an abrupt change in the velocity of the contact line when the adsorbed film of the surfactant solution was just hydrated or desiccated during the phase-change processes. This result shows the effect of vesicles and aggregates of the surfactant on the shape evolution of the drops. For these surfactant-laden water drops, we found that the apparent contact angle increased during condensation and decreased during evaporation. However, for the drop of a pure liquid (n-butanol and 2-propanol) the apparent contact angle remained constant at a constant velocity during condensation and evaporation. The contact line was pinned during the evaporation and spreading of the surfactant-laden water drops, but it was not pinned for a drop of a pure alcohol (self-similar shape evolution).  相似文献   

19.
Retention forces and drop parameters are investigated for drops on the verge of sliding on vertical and inclined surfaces. Using earlier observations of drop geometry, the retentive-force factor relating surface-tension forces to contact-angle hysteresis is reliably determined. The retention force for a drop is found to be insignificantly affected by the aspect ratio of its contour. The maximum size of a drop is predicted with good accuracy, based on the two-circle method for approximating shapes of drops. The Bond number of a critical drop is found to be constant for a given surface and liquid. A general relation is proposed between the characteristic advancing and receding contact angles. The relation is supported by a large set of contact-angle data. In the absence of theta R data, the relation allows estimating the receding contact angle and the critical drop size, using only the advancing angle.  相似文献   

20.
The limiting inclination angle (slip angle), for which a two-dimensional water drop may be at equilibrium on a chemically heterogeneous surface, is exactly calculated for a variety of cases. The main conclusion is that, in the cases studied, the contact angles at the upper and lower contact line do not always simultaneously equal the receding and advancing contact angles, respectively. On a hydrophobic surface, the lowest contact angle (at the upper contact line) tends to be approximately equal to the receding contact angle, while the highest contact angle (at the lower contact line) may be much lower than the advancing contact angle. For hydrophilic surfaces, the opposite is true. These conclusions imply that the hysteresis range cannot in general be measured by analyzing the shape of a drop on an inclined plane. Also, the limiting inclination angle cannot in general be calculated from the classical equation based only on the advancing and receding contact angles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号