首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A series of novel the semicarbazone derivatives of calix[4]arene have been synthesized and then immobilized onto amino functionalized magnetic nanoparticles. Magnetic Fe3O4 nanoparticles were prepared by the chemical co-precipitation of Fe(III) and Fe(II) ions and the nanoparticles were modified directly by 3-aminopropyltriethoxy silane (APTES) to introduce reactive amine groups onto the particles’ surface. The characterization of the prepared compounds was made by FT-IR, elemental analysis, TGA/DTG and NMR techniques. The sorption properties of the new calix[4]arene based magnetic sorbents toward Cr(VI) ion were also studied. The results showed that the prepared magnetic nanoparticles were effective sorbents for the removal of Cr(VI) ion. Also, Langmuir and Freundlich isotherm models were applied for Cr(VI) ion sorption by using MN-C2 and it was found that the experimental data confirmed to Langmiur isotherm model.  相似文献   

2.
A novel polyacrylonitrile (PAN)–titanium oxide (TiO2) nanofiber adsorbent functionalized with aminopropyltriethoxysilane (APTES) was fabricated by electrospinning. The adsorbent was characterized by SEM, FTIR, TEG and BET analyses. The pore diameter and surface area of the adsorbent were 3.1 nm and 10.8 m2 g?1, respectively. The effects of several variables, such as TiO2 and amine contents, pH, interaction time, initial concentration of metal ions, ionic strength and temperature, were studied in batch experiments. The kinetic data were analyzed by pseudo-first-order, pseudo-second-order and double-exponential models. Two isotherm models, namely Freundlich and Langmuir, were used for analysis of equilibrium data. The maximum adsorption capacities of Th(IV), Ni(II) and Fe(II) by Langmuir isotherm were found to be 250, 147 and 80 mg g?1 at 45 °C with pH of 5, 6 and 5, respectively, and greater adsorption of Th(IV) could be justified with the concept of covalent index and free energy of hydration. Calculation of ΔG°, ΔH° and ΔS° demonstrated that the nature of the Th(IV), Ni(II) and Fe(II) metal ions adsorption onto the PAN–TiO2–APTES nanofiber was endothermic and favorable at a higher temperature. The negative values of ΔG° for Th(IV) showed that the adsorption process was spontaneous, but these values for Ni(II)and Fe(II) were positive and so the adsorption process was unspontaneous. Increasing of ionic strength improved the adsorption of Ni(II) and Fe(II) on nanofiber adsorbent but decreased the adsorption capacity of Th(IV). The adsorption capacity was reduced slightly after six cycles of adsorption–desorption, so the nanofiber adsorbent could be used on an industrial scale. The inhibitory effect of Ni(II) and Fe(II) on the adsorption of Th(IV) was increased with an increase in the concentration of inhibitor metal ions.  相似文献   

3.
Removal of lead from aqueous solutions by adsorption onto coconut-shell carbon was investigated. Batch adsorption experiments were performed to find out the effective lead removal at different metal ion concentrations. Adsorption of Pb2+ ion was strongly affected by pH. The coconut-shell carbon (CSC) exhibited the highest lead adsorption capacity at pH 4.5. Isotherms for the adsorption of lead on CSC were developed and the equilibrium data fitted well to the Langmuir, Freundlich, and Tempkin isotherm models. At pH 4.5, the maximum lead adsorption capacity of CSC estimated with the Langmuir model was 26.50 mg g(-1) adsorbent. Energy of activation (Ea) and thermodynamic parameters such as DeltaG, DeltaH, and DeltaS were evaluated by applying the Arrhenius and van't Hoff equations. The thermodynamics of Pb(II) on CSC indicates the spontaneous and endothermic nature of adsorption. Quantitative desorption of Pb(II) from CSC was found to be 75% which facilitates the sorption of metal by ion exchange.  相似文献   

4.
Polystyrene-divinylbenzene resin (PS-DVB) was functionalized with a benzothiazole group. PS-DVB with amino group was initially prepared by nitration and reduction reactions and subsequently treated with ethyl 2-benzothiazolylacetate (BA) to obtain the chelating resin with an amide linkage (BA-PS-DVB). Meanwhile, the amino-PS-DVB was diazotized and coupled with BA to obtain the chelating resin with an azo linkage (azo-BA-PS-DVB). The resins were characterized by elemental analysis and infrared spectroscopy and evaluated for their extraction of Cd(II), Cu(II) and Pb(II) ions in water before their determinations by flame atomic absorption spectrometry (FAAS). Extraction conditions were optimized for batch method such as the pH of the solution, the extraction time and the adsorption isotherm. The optimum pH for the extraction of Cd(II), Cu(II) and Pb(II) are 8.0, 7.0 and 6.0, respectively, while the equilibrium time of all ions was reached within 10-20 min. The adsorption behavior of all the metal ions followed the Langmuir adsorption isotherm. In the column method, the optimum flow rates of metal sorption onto BA-PS-DVB and azo-BA-PS-DVB columns were 2.5 and 4.0 mL min− 1. Metal ions sorbed onto columns were eluted by 0.5 to 2.0 M HNO3. The preconcentration factors of Cd(II) and Cu(II) on azo-BA-PS-DVB and Cu(II) on BA-PS-DVB were 50, 50, and 20, respectively. The present column method gave acceptable validation results: 71.2 and 74.0% recovery for Cd(II) and Cu(II) and an overall relative standard deviation (R.S.D) less than 10% (n = 15). The proposed method was applicable for determining Cu(II) in drinking water.  相似文献   

5.
Metal ions sorption can be significantly affected by the presence of other sorbates, especially of complexing ligands. In this study, the effect of Se(IV) on Eu(III) sorption onto TiO2 at different pH and Eu(III) concentration was investigated. Se(IV) was found to enhance Eu(III) sorption as a function of Se(IV) concentration. Constant capacitance model was successfully used to interpret the sorption experimental data. The solubility product of Eu2(SeO3)3 at ambient temperature was investigated to highlight the sorption mechanism of ternary sorption system. The pK sp value of Eu2(SeO3)3 was found to be 31.51 ± 0.95.  相似文献   

6.
Zn(II) ions sorption onto N‐Benzoyl‐N‐Phenylhydroxylamine (BPHA) impregnated polyurethane foam (PUF) has been studied extensively using radiotracer and batch techniques. Maximum sorption (~98%) of Zn(II) ions (8.9 × 10?6 M) onto sorbent surface is achieved from a buffer of pH 8 solution in 30 minutes using 7.5 mg/mL of BPHA‐impregnated polyurethane foam at 283 K. The sorption data follow Langmuir, Freundlich and Dubinin‐Radushkevich (D‐R) isotherms. The Langmuir constants Q = 18.01 ± 0.38 μ mole g?1 and b = (5.39 ± 0.98) × 103 L mole?1 have been computed. Freundlich constants 1/n = 0.29 ± 0.01 and Cm = 111.22 ± 12.3 μ mole g?1 have been estimated. Sorption capacity 31.42 ± 1.62 μ mole g?1, β = ?0.00269 ± 0.00012 kJ2 mole?2 and energy 13.34 ± 0.03 kJ mole?1 have been evaluated using D‐R isotherm. The variation of sorption with temperature yields ΔH = ?77.7 ± 2.8 k J mole?1, ΔS = ?237.7 ± 9.3 J mole?1 K?1 and ΔG = ?661.8 ± 117.5 k J mol?1 at 298 K reflecting the exothermic and spontaneous nature of sorption. Cations like Fe(III), Ce(III), Al(III), Pb(II) and Hg(II) and anions, i.e., oxalate, EDTA and tartrate, reduce the sorption significantly, while iodide and thiocyanate enhanced the sorption of Zn(II) ions onto BPHA‐impregnated polyurethane foam.  相似文献   

7.
Sorption of Fe(III) cations on Cambrian blue clay is discussed in term of the Langmuir isotherm. The thermodynamic characteristics of sorption were determined. The Gibbs energies of formation of sorbed Fe(III) aqua and hydroxo cations were calculated. The role of hydroxo complexes in sorption was considered.  相似文献   

8.
The sorption of Fe(2+) onto unbleached kraft fibre was investigated at different conditions such as pH, temperature, and concentrations. The sorption, which increased with concentration and temperature, followed the Langmuir isotherm. Thermodynamically, the process was spontaneous and endothermic. It was found that the precipitation of Fe(2+) was highly dependent on pH and reached 100% when pH exceeded approximately 8.  相似文献   

9.
A solid phase extraction method for the determination of Cu(II), Mn(II) and Zn(II) metal ions in natural water and leafy vegetable samples by ICP-AES was developed. The method was based on the sorption of metal ions onto Amberlite XAD-16 functionalized with a new chelating ligand potassium 2-benzoylhydrazinecarbodithioate (Amberlite XAD-16-PBHCD) and elution with nitric acid. The optimum experimental conditions for the quantitative sorption of the three metal ions, namely, effect of pH, sample volume, flow rate, concentration of eluent, sorption capacity, kinetics of sorption, and the effect of diverse ions on the sorption of analytes have been investigated. All the metal ions were quantitatively retained by the functionalized resin at pH 5.0 and sorbed metals could be eluted with 2.0?M HNO3. The detection limits were 5.6, 4.5 and 1.8?µg?L?1 for Cu(II), Mn(II) and Zn(II), respectively. The developed method was applied for the determination of Cu(II), Mn(II) and Zn(II) in water and leafy vegetable samples.  相似文献   

10.
An indigenously prepared zinc chloride activated Ipomoea carnea (morning glory), a low-cost and abundant adsorbent, was used for removal of Cu(II) ions from aqueous solutions in a batch adsorption system. The chemical activating agent ZnCl2 was dissolved in deionised water and then added to the adsorbent in two different ratios 1:1 and 1:0.5 adsorbent to activating agent ratio by weight. Studies were conducted as a function of contact time, initial metal concentration, dose of adsorbent, and pH. Activated Ipomoea carnea (AIC) were characterised using scanning electron microscopy (SEM), iodine number and methylene blue number. High iodine numbers indicates development of micro pores with zinc chloride activation. Maximum adsorption was noted within pH range 6.0(±0.05). Adsorption process is fast initially and reaches equilibrium after about 4 hours. The kinetic data were analysed using pseudo-first-order and pseudo-second-order models. The pseudo-second-order kinetic model was found to agree well with the experimental data. Adsorption equilibrium data were analyzed using Langmuir and Freundlich isotherm models. The Langmuir model represented the sorption process better than the Freundlich model. Based on the Langmuir isotherm, the monolayer adsorption capacity of Cu(II) ions was 7.855 mg?g?1 for AIC (1:1) and 6.934 mg?g?1 for AIC (1:0.5).  相似文献   

11.
Selenium (Se) is naturally occurring in the environment and is an essential nutrient in mammals. However, environmental Se can be increased to toxic levels through different industrial practices. The potential adsorption of the Se oxoanions, selenite and selenate, from aqueous solutions onto nanosynthesized MnFe2O4 was investigated using batch techniques and DRC-ICP-MS spectroscopy. The nanomaterial (NM) was laboratory synthesized through slow titration of a mixture of Fe2+ and Mn2+ ions. X-ray diffraction and Scherrer's equation were used to determine the phase of the material and crystallite size, respectively. The effects of pH, reaction time, competitive anions, and the adsorption capacity of the synthesized NM to bind selenite and selenate were investigated. The Langmuir isotherm was used to determine the binding capacity of the NM. Results showed that the phase of the nanomaterial was similar to Jacobsite with a size of 27.5 nm. Results also showed that the sorption of either 100 ppb of selenite or selenate was pH independent in the pH range 2 to 6 and occurred within 5 min of contact time. The introduction of Cl and NO3 anions individually added to solution had no significant effect on the sorption of either selenite or selenate. However, it was found that the addition of SO42 had a competitive effect only on the sorption of selenate, first seen at 10 ppm and more pronounced at 100 ppm of SO42. In the presence of 100 ppm of PO43, the adsorption of selenate decreased to 87% while selenite sorption decreased to 20%. From the Langmuir isotherm equation it was determined that the nano-Jacobsite had a selenite and selenate binding capacity of 6573.76 and 769.23 mg Se/kg of NM, respectively.  相似文献   

12.
The sorption of [Fe(CN)6]3? and [Fe(CN)6]4? anions on the surface of Fe(III), Cr(III), and Zr(IV) oxyhydroxide hydrogels at various pH values of hydrogel precipitation from solutions without a support electrolyte and from NaCl and Na2SO4 solutions with an ionic strength of 0.5 was studied. It was found that isotherms of sorption of [Fe(CN)6]3? and [Fe(CN)6]4? anions from solutions without a support electrolyte and from NaCl solutions and those of sorption of [Fe(CN)6]4? from Na2SO4 solutions are described by the Langmuir equation. It was established that the sulfate background suppresses the sorption of [Fe(CN)6]3? on Fe(III) and Zr(IV) oxyhydroxides. Both anions are sorbed only when the surface of the oxyhydroxides is charged positively; the Langmuir equation parameters A max and K tend to decrease to the point of zero charge as the pH value of oxyhydroxide precipitation increases. An electrostatic mechanism of the sorption of [Fe(CN)6]3? and [Fe(CN)6]4? anions was suggested.  相似文献   

13.
Nanocrystalline MnO2, synthesized by alcoholic hydrolysis of KMnO4, has been studied as a sorbent for removal of americium from low level liquid waste solutions. The synthesized MnO2 was found to have BET surface area of 230 m2 g?1. Am(III) was found to be sorbed by MnO2 quantitatively within 15 min at pH 5. The sorption was found to be more than 90 % at as low a pH as 1.2 and reached to near 100 % at all pH values above pH 3.0 There was no effect of ionic strength (0.01–1.0 M NaCl, CaCl2) on the sorption suggesting the sorption following inner sphere complexation mechanism at all the pH values. Adsorption isotherm studies were carried out using Eu(III) as a chemical analogue of Am(III). These studies showed the isotherm data to follow Langmuir adsorption isotherm.  相似文献   

14.
The sorption behaviour of Pb(II) ions onto activated carbon prepared from Citrus limettioides peel (CLPC) and seed (CLSC), which is a novel waste material, was evaluated as a function of contact time, pH, adsorbent dose, ionic strength, initial metal ion concentration and temperature in batch adsorption processes with raw Citrus limettioides peel (CLP) and seed (CLS). The maximum uptake of lead(II) ions was obtained at pH range 4.0–6.0 for CLPC, CLSC and 5.0–6.0 for raw materials (CLP, CLS). The optimal contact time was found to be 3 h. Surface morphology and functionality of the adsorbent were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) analysis and Fourier-transform infrared (FT-IR) spectroscopy. The equilibrium data fit well with the Langmuir isotherm, confirming monolayer coverage of lead(II) ions onto CLP, CLPC, CLS and CLSC. The Langmuir monolayer adsorption capacity of CLP, CLPC, CLS and CLSC was found to be 123.60, 166.67, 15.32 and 142.86 mg/g. The calculated thermodynamic parameters showed that the sorption process was feasible, spontaneous and exothermic in nature. Kinetic studies demonstrated that adsorption of lead(II) ions followed a pseudo-second-order equation, suggesting that the adsorption process is presumably chemisorption. The adsorbents were tested for removal of Pb(II) from electroplating wastewater in connection with the reuse and selectivity of the adsorbents.  相似文献   

15.
16.

Batch sorption experiments were performed to investigate the sorption mechanism of Se on montmorillonite under reducing conditions in deep geological environments. Based on Eh–pH diagrams and ultraviolet–visible spectra, Se was dissolved as selenide (Se(–II)) anions under the experimental conditions. The distribution coefficients (Kd; m3 kg?1) of Se(–II) indicated ionic strength independence and slight pH dependence. The Kd values of Se(–II) were higher than those of Se(IV), which also exists as an anionic species. X-ray absorption near edge spectroscopy showed that the oxidation state of Se-sorbed on montmorillonite was zero even though selenide remained in the solution. These results suggest that Se(–II) was oxidized and precipitated on the montmorillonite surface. Therefore, it is implied that a redox reaction on the montmorillonite surface contributed to high Kd values for Se(–II).

  相似文献   

17.
Manganese oxide nanocomposite (Mn2O3/Mn3O4) was prepared by sol-gel technique and used as an adsorbent. Fourier Transform Infrared (FTIR) spectroscopy, X-ray diffraction (XRD), and Field Emission Scanning Electron Microscopy (FE-SEM) were used to characterize the adsorbent. The response surface methodology (RSM) was employed to evaluate the effects of solution pH, initial Fe (III) ions concentration, adsorbent weight, and contact time on the removal ratio of the Fe (III) ions. A total of 27 adsorption experimental runs were carried out employing the detailed conditions designed based on the Box-Behnken design (BBD). Results showed that the pH of the solution and initial Fe (III) ions concentration were the most significant parameters for Fe (III) ions removal. In process optimization, the maximal value of the removal ratio of Fe (III) was achieved as 95.80%. Moreover, the corresponding optimal parameters of adsorption process were as: contact time?=?62.5?min, initial Fe (III) concentration?=?50?mg/L, adsorbent weight?=?0.5?g, and pH?=?5. The experimental confirmation tests showed a strong correlation between the predicted and experimental responses (R2?=?0.9803). The fitness of equilibrium data to common isotherm equations such as Langmuir, Freundlich, and Temkin were also tested. The sorption isotherm of adsorbent was best described by the Langmuir model. The kinetic data were analyzed using pseudo-first-order, pseudo-second-order, intraparticle diffusion, and Elovich kinetic models. The adsorption kinetics of Fe (III) ions were well fitted with the pseudo-second-order kinetic model.  相似文献   

18.
Zhang L  Zhang M  Guo X  Liu X  Kang P  Chen X 《Talanta》2010,83(2):344-350
Titanium dioxide nanoparticles (nano-TiO2) were employed for the sorption of Te(IV) ions from aqueous solution. A detailed study of the process was performed by varying the sorption time, pH, and temperature. The sorption was found to be fast, equilibrium was reached within 8 min. When the concentration of Te(IV) was below 40 mg L−1, at least 97% of tellurium was adsorbed by nano-TiO2 in the pH range of 1-2 and 8-9. The sorbed Te(IV) ions were desorbed with 2.0 mL of 0.5 mol L−1 NaOH. The sorption data could be well interpreted by the Langmuir model with the maximum adsorption capacity of 32.75 mg g−1 (20 ± 0.1 °C) of Te(IV) on nano-TiO2. The kinetics and thermodynamics of the sorption of Te(IV) onto nano-TiO2 were also studied. The kinetic experimental data properly correlated with the second-order kinetic model (k2 = 0.0368 g mg−1 min−1, 293 K). The overall rate process appeared to be influenced by both boundary layer diffusion and intra-particle diffusion. The mean energy of adsorption was calculated to be 17.41 kJ mol−1 from the Dubinin-Radushkevich (D-R) adsorption isotherm at room temperature. Moreover, the thermodynamic parameters for the sorption were estimated, and the ΔH0 and ΔG0 values indicated the exothermic and spontaneous nature of the sorption process, respectively. Finally, Nano-TiO2 as sorbent was successfully applied to the separation of Te(IV) from the environmental samples with satisfactory results (recoveries >95%, relative standard deviations was 2.0%).  相似文献   

19.
In order to understand the essential processes/interactions between the metal ions and modified electrodes which are based on complexing polymeric films, access to thermodynamic characteristics is compulsory. The paper enlarges the information concerning the sorption of metal ions within complexing polymer films, particularly based on azulene, which can be involved in metal detection sensors. Interactions between lead(II) or cadmium(II) ions and complexing polymer films have been studied using chemical preconcentration–anodic stripping method. The films have been obtained by controlled potential electrolysis in millimolar solutions of 4-azulen-1-yl-2,6-bis(2-thienyl)pyridine (L) in acetonitrile. PolyL films affinities towards these metal ions have been quantified at different temperatures by means of sorption isotherms. Parameters for sorption of lead(II) and cadmium(II) ions within polyL films have been calculated for Freundlich, Langmuir and Redlich–Peterson isotherms. The best fit was obtained when using Langmuir isotherm. The results evidence that lead ions are better sorbed than cadmium within polyL film. Thermodynamic parameters for the chemical sorption of lead(II) and cadmium(II) ions within polyL films have been calculated.  相似文献   

20.
The present work proposes the use of Agave sisalana (sisal fiber) as an natural adsorbent for ions Pb(II) and Cd(II) biosorption from natural waters. The flame atomic absorption spectrometry was used for quantitative determination and study of the ions Pb(II) and Cd(II) adsorption on the solid phase. The Fourier transform infrared spectroscopy (FT IR) was used to investigate the sisal structure and the specific BET surface area was analyzed. The biosorption potential of sisal as biosorbent for the removal of the ions Pb(II) and Cd(II) from aqueous solution was investigate considering the followings parameters: pH, biomass amount and contact time. Langmuir and Freundlich isotherms were used to evaluate adsorption behavior of the ions on this solid phase. The results showed that sisal has a surface area to adsorption of 0.0233 m2 g− 1, and the OH and CO functional groups are the main involved in the biosorption. The best interpretation for the experimental data was given by Freundlich isotherm that proposes a monolayer sorption with a heterogeneous energetic distribution of active sites, accompanied by interactions between sorbed molecules. The maximum monolayer biosorption capacity was found to be 1.85 mg g− 1 for Cd (II) and 1.34 mg g− 1 for Pb (II) at pH 7 and 296 K. This phase solid can be used for biosorption of cadmium and lead in polluted natural waters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号