首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Both surface microstructure and low surface energy modification play a vital role in the preparation of superhydrophobic surfaces. In this study, a safe and simple electrochemical method was developed to fabricate superhydrophobic surfaces of Zr-based metallic glasses with high corrosion resistance. First, micro–nano composite structures were generated on the surface of Zr-based metallic glasses by electrochemical etching in NaCl solution. Next, stearic acid was used to decrease surface energy. The effects of electrochemical etching time on surface morphology and wettability were also investigated through scanning electron microscopy and contact angle measurements. Furthermore, the influence of micro–nano composite structures and roughness on the wettability of Zr-based metallic glasses was analysed on the basis of the Cassie–Baxter model. The water contact angle of the surface was 154.3° ± 2.2°, and the sliding angle was <5°, indicating good superhydrophobicity. Moreover, the potentiodynamic polarisation test and electrochemical impedance spectroscopy suggested excellent corrosion resistance performance, and the inhibition efficiency of the superhydrophobic surface reached 99.6%. Finally, the prepared superhydrophobic surface revealed excellent temperature-resistant and self-cleaning properties.  相似文献   

2.
The transfer of electromagnetic wave energy to the metallic material is done by an exchange between the laser photons and the lattice electrons via the inverse bremstrahlung. This process induces the passage of an electron from the valence to the conduction band in which it becomes free and energetic and it provokes, by collision with others electrons of the crystal lattice, the heating of the sample surfaces. The laser energy is then transformed, at the surface, into thermal energy (heat) which diffuses into the sample.For the same kind of materials with surfaces prepared in the same conditions, only laser beam parameters vary, following the relation: Qs = P τ / S, where Qs is the specific energy at the lighted surface, P the power of the laser, τ the interaction time and S the surface lighted by the laser beam. This factor indicates if the laser treatments are done without microstructural modification of the samples or with melting of the material surface.The martensitic phase α' obtained after the laser treatment is metastable, with a small grain size compared to those obtained with the classical thermal treatments. The size of α' grains depends on the energy density (Qs = P τ / S ) received by the specimen from the laser wave.  相似文献   

3.
The surfaces of polyethylene terephthalate (PET) obtained by irradiation with a CO2 pulsed laser in air were studied. The complicated microstructures using various laser wavelengths were observed by scanning electron microscopy (SEM). The changes in chemical and physical properties of the irradiated PET surface were investigated by attenuated total reflectance infrared spectroscopy (ATR-FTIR) and contact angle measurements. ATR-IR spectrum showed that the crystallinity in the surface region decreased due to laser irradiation. The water drop contact angle also decreased with increasing of laser pulses. The density of peroxides formed on the irradiated PET surface were determined by iodide method.  相似文献   

4.
Combined SPR and SERS microscopy in the Kretschmann configuration   总被引:1,自引:0,他引:1  
A novel hybrid spectroscopic technique is proposed, combining surface plasmon resonance (SPR) with surface-enhanced Raman scattering (SERS) microscopy. A standard Raman microscope is modified to accommodate the excitation of surface plasmon-polaritons (SPPs) on flat metallic surfaces in the Kretschmann configuration, while retaining the capabilities of Raman microscopy. The excitation of SPPs is performed as in standard SPR-microscopy; namely, a beam with TM-polarization traverses off-axis a high numerical aperture oil immersion objective, illuminating at an angle the metallic film from the (glass) substrate side. The same objective is used to collect the full Kretschmann cone containing the SERS emission on the substrate side. The angular dispersion of the plasmon resonance is measured in reflectivity for different coupling conditions and, simultaneously, SERS spectra are recorded from Nile Blue (NB) molecules adsorbed onto the surface. A trade-off is identified between the conditions of optimum coupling to SPPs and the spot size (which is related to the spatial resolution). This technique opens new horizons for SERS microscopy with uniform enhancement on flat surfaces.  相似文献   

5.
Hydrophobicity, lubrication and anticorrosion properties of steel substrates have been obtained by a deposition of thin film (i.e. by mechanochemical treatment) at room conditions. Stearic acid and paraffin were chosen as reactive molecules. Different abrasive powders were selected to generate active sites on the treated surfaces for adsorption of the reactive molecules and then, the results were compared. The surfaces were analyzed by reflection-absorption infrared spectroscopy (RAIRS). The results emphasize that, a thick layer of mixed stearic acid/paraffin was deposited onto the metallic surface after the treatment. After hexane rinsing we could only detect a very thin layer of oriented stearic acid molecules chemically adsorbed onto the metallic surface and which engages strong interactions with it. Whereas, RAIRS only provides molecular analysis, the XPS technique was complementary for discriminating the different surfaces. It was possible to show differences in thickness as well as in coverage according to the size and shape of abrasive particles. Furthermore, we could conclude that deposit layer is not uniform. Defects were always present and were dependent on abrasive powders used. Then wettability was assessed as a way to test the homogeneity of thin films generated by the mechanochemical treatment. In agreement with theoretical data, receding contact angle was very dependent on the defects in the deposited film. If holes or aggregates were increased in the deposit layer, the receding contact angle was decreased while advancing contact angles and equilibrium contact angles remained constant. A very important point for technological applications was that the homogeneity of the deposited film was governed by abrasive powder involved in mechanochemical treatment and contact angle values were a direct measurement of the homogeneity of surfaces generated by mechanochemical treatment.  相似文献   

6.
A superhydrophobic surface is produced from industrial grade polymer materials. The surface comprises partly disordered triple-scaled arrays of polyvinylidene fluoride (PVDF) globules. An inherently superhydrophobic metallic surface is produced with polymer template. The mathematical model based on the Cassie-Baxter hypothesis of air trapping under a water drop is built, which gives the apparent contact angle on the manifold-scaled interface. The presence of several scales itself is not a sufficient condition of hydrophobicity of inherently wettable surfaces. The geometrical features favoring the increase of the vapor-water interface fraction are necessary for this phenomenon.  相似文献   

7.
In this work, we have studied superhydrophilic and superhydrophobic transitions on the vertically aligned multiwalled carbon nanotube (VACNT) surfaces. As-grown, the VACNT surfaces were superhydrophobic. Pure oxygen plasma etching modified the VACNT surfaces to generate superhydrophilic behavior. Irradiating the superhydrophilic VACNT surfaces with a CO2 laser (up to 50?kW?cm?2) restored the superhydrophobicity to a level that depended on the laser intensity. Contact angle and surface energy measurements by the sessile drop method were used to examine the VACNT surface wetting. X-ray photoelectron spectroscopy (XPS) showed heavy grafting of the oxygen groups onto the VACNT surfaces after oxygen plasma etching and their gradual removal, which also depended on the CO2 laser intensity. These results show the great influence of polar groups on the wetting behavior, with a strong correlation between the polar part of the surface energy and the oxygen content on the VACNT surfaces. In addition, the CO2 laser treatment created an interesting cage-like structure that may be responsible for the permanent superhydrophobic behavior observed on these samples.  相似文献   

8.
Wetting, evaporative, and pinning strength properties of hydrophilic sites on superhydrophobic, nanostructured surfaces were examined. Understanding these properties is important for surface characterization and designing features in self-cleaning, lotus-leaf-like surfaces. Laser-ablated, hydrophilic spots between 250 mum and 2 mm in diameter were prepared on silicon nanowire (NW) superhydrophobic surfaces. For larger circumference pinning sites, initial contact angle measurements resemble the contact angle of the surface within the pinning site: 65-69 degrees . As the drop volume is increased, the contact angles approach the contact angle of the NW surface without pinning sites: 171-176 degrees . The behavior of water droplets on the pinning sites is governed by how much of the water droplet is being influenced by the superhydrophobic NW surfaces versus the hydrophilic areas. During the evaporation of sinapic acid solution, drops are pinned by the spots except for the smaller circumference sites. Pinning strengths of the hydrophilic sites are a linear function of the pinning spot circumference. Protein samples prepared and deposited on the pinning sites for analysis by matrix-assisted laser desorption ionization indicate an improvement in sensitivity from that of a standard plate analysis by a factor of 5.  相似文献   

9.
Raman spectroscopy is a powerful technique for materials analysis, and we are developing and analyzing a remote Raman system for use on a planetary lander or rover. We have acquired data at a distance of 10m from a variety of geologic materials using different instrument designs. We have employed a pulsed laser with both an ungated detector and a gated detector. A gated detector can reduce long-lived fluorescence while still collecting all Raman signal. In order to design a flight instrument, we need to quantify how natural surfaces will respond to laser stimulus. We define remote Raman efficiency of natural surfaces as the ratio of radiant exitance leaving a natural surface to the irradiance of the incident laser. The radiant exitance of a natural surface is the product of the sample radiance, the projected solid angle, and the full-width-half-maximum of the Raman signal. We have determined the remote Raman efficiency for a variety of rocks and minerals. The best efficiencies are achieved for large, clear, single crystals that produce the most radiant exitance, while darker fine-grained mineral mixtures produce lower efficiencies. By implementing a pulsed laser, gated detector system we have improved the signal detection and have generally decreased the integration time necessary to detect Raman signal from natural surfaces.  相似文献   

10.
The surface of polyurethane based catheter material or of silicon wafers as model surfaces were modified by spin coating of solutions of poly(ethylene oxide) or poly(vinyl alcohol) in water. For the incorporation of silver ions, silver nitrate was added to some of the solutions or the as-cast surfaces were dipped into AgNO3 solution. Furthermore, samples coated with a thin layer of metallic silver were prepared by deposition of silver vapor in vacuum. The as-prepared surfaces were studied by atomic force microscopy and X-ray photoelectron spectroscopy. During the spin coating of the solutions containing AgNO3, clusters of the silver component were formed. They were well dispersed in a poly(vinyl alcohol) matrix but act as nucleation agents in poly(ethylene oxide) where then large spherulites are formed. The surface compositions of coated samples and the depth profiling were carried out by angle dependent X-ray photoelectron spectroscopy.  相似文献   

11.
We present a new and simple method to produce superhydrophobic surfaces with ultralow hysteresis. The method involves surface modification of SU-8 using an excimer laser treatment. The modified surface is coated with a hydrophobic plasma-polymerized hexafluoropropene layer. The advancing and receding water contact angles were measured to be approximately 165 degrees . The achieved water contact angle hysteresis was below the measurement limit. This low hysteresis can be ascribed to nanoscale debris generated during the excimer laser process.  相似文献   

12.
The influence of the pulsed CO2 laser irradiation on the surface structure of the LDPE film was investigated. Significant changes were observed on the surface of laser treated films as it was verified by the attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, scanning electron microscopy and contact angle-measurement. Formation of polar functional groups onto the LDPE surfaces exhibited by the ATR-FTIR spectra was shown to be strongly dependent on the number of the CO2 laser pulses. The intensity of the polar groups increased with increasing the number of pulses up to two and then slightly decreased at three laser pulses. This was also confirmed with the contact angle measurements in which the sample subjected to two laser pulses showed the highest wettability i.e. the lowest water drop contact angle. The concentration of peroxide groups formed on the surface of the laser treated films was determined quantitatively by UV spectroscopic method using iodide procedure. The latter results showed a similar trend with the results obtained using FTIR spectroscopy.  相似文献   

13.
Atomic force microscopy (AFM) was used to analyze rectangular 3‐dimensional patterned microstructures with different functionalities induced on copolyimide containing alicyclic sequences film surfaces by means of oxygen plasma treatment. The plasma power was ranged to be big enough to accelerate the plasma species towards the copolyimide surface, and the exposure time was not very small to generate a roughness that still can be monitored by AFM. To create the rectangular pattern, transmission electron microscopy grid masks were placed on the samples before treatment. Plasma‐induced micropatterning with alternating hydrophilic and hydrophobic surface chemistries was evaluated by measuring the adhesion forces between the gold‐covered AFM tip and the copolyimide surfaces. To fabricate 3‐dimensional metallic microstructures arranged in well‐defined areas, thin metal layers were sputtered on these pretreated copolyimide films. The AFM morphological aspects of the obtained metallic structures were correlated with the surface modifications induced by plasma treatment conditions. Functional indexes and functional volume parameters were also calculate to characterize the functional behavior of the surface, such as wear, lubrication, and contact. The AFM data were compared with those obtained using the small‐angle X‐ray scattering measurements.  相似文献   

14.
Selected polymers (polyethylene‐PE, polypropylene‐PP, polytetrafluoroethylene‐PTFE, polystyrene‐PS and polyethylenterephthalate‐PET) were irradiated with the linearly polarized light of a pulsed 157 nm F2 laser. The irradiation results in degradation of polymers and ablation of polymer surfaces. Contact angle, measured by goniometry, was studied as a function of the number of laser pulses. The volume of the ablated polymer layer was determined by gravimetry. Changes in surface morphology and roughness were observed using atomic force microscopy. Surface chemistry of the samples was investigated by electrokinetic analysis and by XPS. While PET and PE exhibit small ablation, the ablation of PS and PTFE is more significant, and the most pronounced ablation is observed on PP. Contact angle of all polymers, with the only exception of PP, is a decreasing function of the number of laser pulses up to 2000 pulses. Laser irradiation leads to a refinement of the polymer surface morphology and a decrease of their surface roughness. Electrokinetic analysis and PS show changes in the surface chemistry of polymers after the laser treatment. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
The relationship between perturbations to contact angles on a rough or textured surface and the super-hydrophobic enhancement of the equilibrium contact angle is discussed theoretically. Two models are considered. In the first (Wenzel) case, the super-hydrophobic surface has a very high contact angle and the droplet completely contacts the surface upon which it rests. In the second (Cassie-Baxter) case, the super-hydrophobic surface has a very high contact angle, but the droplet bridges across surface protrusions. The theoretical treatment emphasizes the concept of contact-angle amplification or attenuation and distinguishes between the increases in contact angles due to roughening or texturing surfaces and perturbations to the resulting contact angles. The theory is applied to predicting contact-angle hysteresis on rough surfaces from the hysteresis observable on smooth surfaces and is therefore relevant to predicting roll-off angles for droplets on tilted surfaces. The theory quantitatively predicts a "sticky" surface for Wenzel-type surfaces and a "slippy" surface for Cassie-Baxter-type surfaces.  相似文献   

16.
When surfaces are structured on the scale of the wavelength, we can expect incident light to be strongly modified by the surface. This is especially the case when the surface is metallic. We have developed a formalism for computing these modifications, closely analogous to electron scattering theory, which we briefly review and present some results for optical properties of, and electron energy loss in, colloids. Our main theme is another effect associate with rough or structured metallic surfaces: Surface Enhanced Raman Scattering, or SERS. We model the rough surface by a periodic array of spheres and obtain the correct magnitude for the enhancement and for the frequency shifts observed.  相似文献   

17.
Nanostructuring of noble metal surfaces with biomorphic and biological templates facilitates a variety of applications of surface enhanced Raman scattering (SERS). Here we show that the newly reported insulin amyloid superstructures may be employed as stable nanoscaffolds for metallic Au films providing an effective substrate for SERS on covalently bound molecules of 4-mercaptobenzoic acid (4-MBA). The vortex-aligned insulin fibrils are capable of templating nanopatterns in sputtered Au layers without overlapping the SERS spectra of 4-MBA with vibrational bands stemming from the protein. This holds true regardless of whether the incident laser beam is directly backscattered from the 4-MBA layer, or after passage through the insulin amyloid layer.  相似文献   

18.
The photolithographic modification of monolayers provides a versatile and powerful means of fabricating functionalized nanostructured surfaces. In this contribution, we present photosensitive thiol-bearing aryl ester groups which are capable of undergoing the so-called photo-Fries rearrangement to yield hydroxyketones. Phenyl 16-mercaptohexadecanoate was prepared by a three-step synthesis. This molecule undergoes a photoisomerization reaction upon illumination with UV light at ca. 250 nm. Subsequently this molecule was applied as a self-assembled monolayer on gold. Following photochemical modification, the adsorbates were selectively derivatized to yield amino-functionalized surfaces using a simple two-step reaction. This reaction was monitored by X-ray photoelectron spectroscopy and contact angle measurements and friction force microscopy. Micrometer-scale patterned surfaces were produced using a contact mask in conjunction with a frequency-doubled argon ion laser (lambda=244 nm). Near-field optical exposure was carried out by coupling the laser to a scanning near-field optical microscope and yielded nanometer-scale resolution. Following derivatization, the resulting structures were analyzed by friction force microscopy. Clear contrast was observed in the friction signal following surface modification.  相似文献   

19.
In order to render the surface of polydimethylsiloxane (PDMS) super-hydrophobic without changing its bulk properties, a PDMS film without photosensitizer was exposed to CO2 pulsed laser, at room temperature, as the excitation source. The modified surfaces have been studied by performing scanning electron microscopy (SEM) combined with energy dispersive X-ray analysis (EDXA) and attenuated total reflectance infrared (ATR-IR) spectroscopy. To evaluate the surface property, the water drop contact angle was measured. The dependence of ---Si---O---Si infrared peak intensity, O/Si ratio and water drop contact angle of the treated PDMS as a function of the number of laser pulses were studied. SEM micrographs and water drop contact angle variations show the uniform porosity and super-hydrophobic nature on the surface of PDMS. ATR-FTIR spectra show that the modified PDMS surface contains carbonate groups which enriched the oxygen content of the surface. EDXA analysis shows a higher percentage of oxygen on the surface of the modified PDMS. The hydrophobicity of the samples was found to depend upon the number of laser pulses, but with significant variation between the treated samples. The bulk mechanical properties of PDMS after being laser-treated did not change as shown by dynamic mechanical thermal analysis (DMTA).  相似文献   

20.
In this work, we present theoretical simulations of laser-driven vibrational control of NO adsorbed on a gold surface. Our goal is to tailor laser pulses to selectively excite specific modes and vibrational eigenstates, as well as to favor photodesorption of the adsorbed molecule. To this end, various control schemes and algorithms are applied. For adsorbates at metallic surfaces, the creation of electron-hole pairs in the substrate is known to play a dominant role in the transfer of energy from the system to the surroundings. These nonadiabatic couplings are included perturbatively in our reduced density matrix simulations using a generalization of the state-resolved position-dependent anharmonic rate model we recently introduced. An extension of the reduced density matrix is also proposed to provide a sound model for photodesorption in dissipative systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号