首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Preparation and Crystal Structures of Dipyridiniomethane Monohalogenohydro-closo-Dodecaborates(2?), [(C5H5N)2CH2][B12H11X]; X = Cl, Br, I [B12H12]2? reacts with dihalogenomethanes CH2X2 in presence of trifluoro acetic acid, yielding the monohalogenododecaborates [B12H11X]2? (X = Cl, Br, I), which are separated by ion exchange chromatography on diethylaminoethyl(DEAE) cellulose from the starting compound and higher halogenated products. The X-ray structure determinations of [(C5H5N)2CH2][B12H11Cl] · 2(CH3)2SO (orthorhombic, space group Pnma, a = 17.351(6), b = 16.034(5), c = 9.659(2) Å, Z = 4) and of the isotypic bromo and iodo compounds [(C5H5N)2CH2][B12H11X] (monoclinic, space group P21/n, Z = 4; for X = Br: a = 7.339(2), b = 15.275(3), c = 16.761(4) Å, β = 96.80(2)°; for X = I: a = 7.4436(8), b = 15.3510(8), c = 16.9213(16) Å, ß = 97.326(7)°) exhibit crystal lattices build up by columns of substituted boron clusters and angular dications [(C5H5N)2CH2]2+ orientated along the shortest axis which are assembled to alternating layers.  相似文献   

2.
Preparation, 11B NMR, Vibrational Spectra, and Crystal Structure of [(C5H5N)2CH2][1-(O2N)B10H9] By reaction of [B10H10]2? in aqueous acetonitrile with a saturated solution of NO2 in dichloromethane [1-(O2N) · B10H9]2? and [B10H9(NO)B10H9]3? are formed which can be separated by ion exchange chromatography on diethylaminoethyl(DEAE) cellulose from the starting compound. The X-ray structure determination of [(C5H5N)2CH2][1-(O2N)B10H9] (triclinic, space group P1 , a = 7.1530(9), b = 8.3753(8), c = 15.198(2) Å, α = 96.00(1), β = 95.48(1), γ = 95.60(1)°, Z = 2) reveals the coordination of the NO2 group via N with a B1? N distance of 1.535(5) Å and an O2? N? O1 angle of 119.3(3)°. The 11B NMR spectrum exhibits the characteristic feature (1 : 1 : 4 : 4) of an apical monosubstituted B10 cluster with a strong downfield shift of the ipso-B atom at +13.4 ppm. The IR and Raman spectra show strong NO stretching vibrations at 1381 und 1420 cm?1.  相似文献   

3.
Crystal Structures of Dipyridiniomethane Monohalogenohydro-closo-Decaborates(2–), [(C5H5N)2CH2][2-XB10H9]; X = Cl, Br, I [B10H10]2? reacts with chlorine, bromine and iodine or with N-halogenosuccinimide, yielding the monohalogenodecaborates [2-XB10H9]2? (X = Cl, Br, I), which are separated by ion exchange chromatography on diethylaminoethyl(DEAE) cellulose from the starting compound and higher halogenated products. The X-ray structure determinations of the isotypic chloro and bromo compounds [(C5H5N)2CH2][2-XB10H9] (monoclinic, space group C2/c, Z = 8; for X ? Cl: a = 33.174(5), b = 7.2809(4), c = 16.2232(7) Å, β = 113.307(7)°; for X = Br: a = 33.525(11), b = 7.281(2), c = 16.297(4) Å, β = 113.62(2)°) and of the iodo compound [(C5H5N)2CH2][2-IB10H9] (monoclinic, space group P21, Z = 2, a = 7.143(3), b = 13.568(4), c = 9.479(7) Å, β = 97.57(5)°) show columns of substituted boron clusters [2-XB10H9]2?, X = Cl, Br, I and bent dications [(C5H5N)2CH2]2+ along the shortest axis wich are assembled to alternating layers in the crystal lattice.  相似文献   

4.
Synthesis and Crystal Structure of [P(C6H5)4][2,9-{N,N′-(2-NH? (C5H4N))}B10H8] [N(C4H9)4]2[B10H10] reacts with 2-aminopyridine forming a product mixture from which [2,9-{N,N′-(2-NH? (C5H4N))}B10H8]? can be isolated by ion exchange chromatography on diethylaminoethyl(DEAE) cellulose. The crystal structure of [P(C6H5)4][2,9-{N,N′-(2-NH? (C5H4N))}B10H8] (triclinic, space group P1 , a = 10.1103(9), b = 11.5665(9), c = 14.877(2) Å, α = 102.600(8), β = 107.567(8) und γ = 96.487(7)°, Z = 2) reveals the bonding of 2-NH2-(C5H4N) via both N atoms to vicinal B atoms of the two square planes of the B10 cluster (B2? N1 = 1,541(7) und B9? N2 = 1.505(7) Å) forming a five-membered ring.  相似文献   

5.
Crystal structures were determined for two new derivatives of heteroligand complexes of Cu(C5HF6O2)2 with nitroxyl radicals derived from 3-imidazoline: Cu(C5HF6O2)2(C13H18N3O) (I) and Cu(C5HF6O2)2(C8H15N2O) (II). The unit cell parameters for I are as follows: a=10.555(3), b=15.505(5), c=18.509(6) Å, V = 3029(1) Å3, Z=4, dcalc=1.57 g/cm3, space group P212121. The unit cell parameters for II are as follows: a=16.018(3), b=15.886(3), c=19.665(4) Å, V = 5004(1)Å3, Z=8, dcalc=1.68 g/cm3, dexp=1.68 g/cm3, space group P212121. The structure of I is molecular. The coordination of the copper ion is a trigonal bipyramid formed by two oxygen atoms of the (hfac) ions and the nitrogen atom of the imidazoline heterocycle in the equatorial plane [Cu–O, 1.91(7), 2.242(7) Å, Cu–N, 2.010(7) Å] and the other oxygen atoms of the (hfac) anion in the axial positions [Cu–O, 1.940(6), 1.963(6) Å]. Complex II is polymeric. The two crystallographically independent Cu(hfac)2 fragments are linked in a chain by means of two L2 ligands. The coordination of the copper ions is a square bipyramid, whose equatorial plane is formed by the oxygen atoms of the (hfac) anion [Cu–O, 1.89(1)–2.03(1) Å]. The axial positions are occupied by nitrogen atoms [Cu–N, 2.52(1), 2.40(1) Å] and an oxygen atom of the NO fragment [Cu–O, 2.96(1), 2.67(1) Å] of different L2 ligands. The ...Cu(hfac)2–L2–Cu(hfac)2–L2... chains in the unit cell are located at two levels (x1/4 and 3/4).Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences. Translated from Zhurnal Strukturnoi Khimii, Vol. 34, No. 2, pp. 126–133, March–April, 1993.  相似文献   

6.
Preparation, 11B, 13C, 1H NMR and Vibrational Spectra of Monoethoxyhydro-closo-dodecaborate(2–), and the Crystal Structure of [(C5H5N)2CH2][B12H11(OC2H5)] By treatment of Na2[B12H12] with dry HF in ethanol Na2[B12H11(OC2H5)] is formed which has been separated by ion exchange chromatography on diethylaminoethyl(DEAE) cellulose from the starting compound and by-products. The X-ray structure determination of [(C5H5N)2CH2][B12H11(OC2H5)] (monoclinic, space group P21/m, a = 9.1906(3), b = 12.6612(8), c = 9.3640(12) Å, β = 112.947(6)°, Z = 2) reveals the complete ordering of the anion sublattice. The 11B nmr spectrum exhibits the characteristic feature (1:5:5:1) of a mono substituted B12 cage with a strong down-field shift of ipso-B at +6.5 ppm. In the 13C nmr spectrum a triplet at 67.9 ppm of the methylene group and a quartet at 19.5 ppm of the methyl group is observed. Correspondingly, the 1H nmr spectrum shows two multiplets at 3.7 and 1.3 as expected for an ethoxy substituent, and a multiplet at 2.1 ppm due to the protons of the boron cluster. The i.r. and Raman spectra exhibit strong CH stretching vibrations between 2 963 and 2 863 cm?1, and in the i.r. spectrum the CO and BO stretching frequencies of the B? O? C bridge are observed at 1 175 and 1 140 cm?1.  相似文献   

7.
Alkylxanthate complexes of the general formula [M{S(S)COR}2] (M = Ni, 63Cu, and 65Cu; R = C2H5, i-C3H7, i-C4H9, s-C4H9, and C5H11) were synthesized and studied by EPR and high-resolution solid-state 13C CP/MAS NMR. In the copper(II) complexes stabilized in the matrix of nickel(II) compounds, square planar chromophores [CuS4] are characterized by rhombic distortion (EPR data). Experimental EPR spectra were simulated at the second order of perturbation theory. Nickel(II) complexes were characterized by 13C NMR spectra. In all cases, the –OC(S)S– groups were found to exhibit intramolecular structural equivalence.  相似文献   

8.
Conclusions Complexes with the composition AlHnCl3–nN(C2H5)3 (n=0, 1, 2, 3) were produced. The IR and PMR spectra of the complexes indicate that when hydrogen atoms are replaced by chlorine atoms, an increase is observed in the acceptor capacity of aluminum compounds.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 10, pp. 2171–2173, October, 1974.  相似文献   

9.
Synthetic methods for several novel phosphoramidate compounds containing the P(O)NHC(O) bifunctional group were developed. These compounds with the general formula R1C(O)NHP(O)(N(R2)(CH2C6H5))2, where R1 = CCl2H, p-ClC6H4, p-BrC6H4, o-FC6H4 and R2 = hydrogen, methyl, benzyl, were characterized by several spectroscopic methods and analytical techniques. The effects of phosphorus substituents on the rotation rate around the P–Namine bond were also investigated. 1H NMR study of the synthesized compounds demonstrated that the presence of bulky groups attached to the phosphorus center and electron withdrawing groups in the amide moiety lead to large chemical-shift non-equivalence (ΔδH) of diastereotopic methylene protons. The crystal structures of CCl2HC(O)NHP(O)(NCH3(CH2C6H5))2, p-ClC6H4C(O)NHP(O)(NCH3(CH2C6H5))2, CCl2HC(O)NHP(O)(N(CH2C6H5)2)2 and p-BrC6H4C(O)NHP(O)(N(CH2C6H5)2)2 were determined by X-ray crystallography using single crystals. The coordination around the phosphorus center in these compounds is best described as distorted tetrahedral and the P(O) and C(O) groups are anti with respect to each other. In the compound Br-C6H4C(O)NHP(O)(N(CH2C6H5)2)2 (with two independent molecules in the unit cell), two conformers are connected to each other via two different N–H?O hydrogen bonds forming a non-centrosymmetric dimer. In the crystalline lattice of other compounds, the molecules form centrosymmetric dimers via pairs of same N–H?O hydrogen bonds. The structure of CCl2HC(O)NHP(O)(N(CH2C6H5)2)2 reveals an unusual intramolecular interaction between the oxygen of CO group and amine nitrogen.  相似文献   

10.
Four new thioantimonates(III) with compositions [(C3H10NO)(C3H10N)][Sb8S13] ( 1 ) (C3H9NO = 1‐amino‐3‐propanol, C3H9N = propylamine), [(C2H8NO)(C2H8N)(CH5N)][Sb8S13] ( 2 ) (C2H7NO = ethanolamine, C2H7N = ethylamine, CH5N = methylamine), [(C6H16N2)(C6H14N2)][Sb6S10] ( 3 ) (C6H14N2 = 1,2‐diaminocyclohexane) and [C8H22N2][Sb4S7] ( 4 ) (C8H20N2 = 1,8‐diaminooctane) were synthesized under solvothermal conditions. Compound 1 : triclinic space group P$\bar{1}$ , a = 6.9695(6) Å, b = 13.8095(12) Å, c = 18.0354(17) Å, α = 98.367(11), β = 96.097(11) and γ = 101.281(11)°; compound 2 : monoclinic space group P21/m, a = 7.1668(5), b = 25.8986(14), c = 16.0436(11) Å, β = 96.847(8)°; compound 3 : monoclinic space group P21/n, a = 11.6194(9), b = 10.2445(5) Å, c = 27.3590(18) Å, β = 91.909(6)°; compound 4 : triclinic space group P$\bar{1}$ , a = 7.0743(6), b = 12.0846(11), c = 13.9933(14) Å, α = 114.723(10), β = 97.595(11), γ = 93.272(11)°. The main structural feature of the two atoms thick layered [Sb8S13]2– anion in 1 are large nearly rectangular pores with dimensions 11.2 × 11.7 Å. The layers are stacked perpendicular to [100] to form tunnels being directed along [100]. In contrast to 1 the structure of 2 contains a [Sb8S13]2– chain anion with Sb12S12 pores measuring about 8.9 × 11.5 Å. Only if longer Sb–S distances are considered as bonding interactions a layered anion is formed. The chain anion [Sb6S10]2– in compound 3 is unique and is constructed by corner‐sharing SbS3 pyramids. Two symmetry‐related single chains consisting of alternating SbS3 units and Sb3S3 rings are bound to Sb4S4 rings in chair conformation. Finally, in the structure of 4 the SbS3 and SbS4 moieties are joined corner‐linked to form a chain of alternating SbS4 units and (SbS3)3 blocks. Neighboring chains are connected into sheets that contain relatively large Sb10S10 heterorings. The sheets are further connected by sulfur atoms generating four atoms thick double sheets.  相似文献   

11.
Conclusions The photochemical reactions of (CO)2(PPh3)MnC5H4Fe(CO)2C5H5 and (CO)2(PPh3)MnC5H4COFe(CO)2C5H5 with PPh3 gave the products of replacing the CO on the Fe atom by PPh3: respectively (CO)2(PPh3)MnC5H4Fe (CO)(PPh3)C5H5 and (CO)2(PPh3)MnC5H4COFe(CO)(PPh3)C5H5.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 12, pp. 2813–2815, December, 1977.  相似文献   

12.
Some new phosphoramidates were synthesized and characterized by 1H, 13C, 31P NMR, IR spectroscopy and elemental analysis. The structures of CF3C(O)N(H)P(O)[N(CH3)(CH2C6H5)]2 ( 1 ) and 4‐NO2‐C6H4N(H)P(O)[4‐CH3‐NC5H9]2 ( 6 ) were confirmed by X‐ray single crystal determination. Compound 1 forms a centrosymmetric dimer and compound 6 forms a polymeric zigzag chain, both via ‐N‐H…O=P‐ intermolecular hydrogen bonds. Also, weak C‐H…F and C‐H…O hydrogen bonds were observed in compounds 1 and 6 , respectively. 13C NMR spectra were used for study of 2J(P,C) and 3J(P,C) coupling constants that were showed in the molecules containing N(C2H5)2 and N(C2H5)(CH2C6H5) moieties, 2J(P,C)>3J(P,C). A contrast result was obtained for the compounds involving a five‐membered ring aliphatic amine group, NC4H8. 2J(P,C) for N(C2H5)2 moiety and in NC4H8 are nearly the same, but 3J(P, C) values are larger than those in molecules with a pyrrolidinyl ring. This comparison was done for compounds with six and seven‐membered ring amine groups. In compounds with formula XP(O)[N(CH2R)(CH2C6H5)]2, 2J(P,CH2)benzylic>2J(P,CH2)aliphatic, in an agreement with our previous study.  相似文献   

13.
Crystal Structures of the Fluorochloroplatinates(IV) cis-[(C5H5N)2CH2][PtF4Cl2], trans-[(C5H5N)2CH2][PtF4Cl2] · H2O, and [(C5H5N)2CH2][PtF5Cl] The complex ions cis-[PtF4Cl2]2?, trans-[PtF4Cl2]2? and [PtF5Cl]2? have been synthesized by stereoselective ligand exchange reactions utilizing the trans effect and are separated by ion exchange chromatography on diethylaminoethyl cellulose. These anions form stable AB-type salts with the doubly charged cation dipyridiniomethane, [(C5H5N)2CH2]2+. X-ray structure determinations on single crystals of cis-[(C5H5N)2CH2][PtF4Cl2] ( 1 ) (monoclinic, space group P21/n with a = 10.379(10), b = 9.635(2), c = 13.738(2) Å, β = 99.142(10)°, Z = 4), trans-[(C5H5N)2CH2][PtF4Cl2] · H2O ( 2 ) (triclinic, space group P1 with a = 7.757(4), b = 10.059(7), c = 10.408(6) Å, α = 82.49(5), β = 68.92(4), γ = 75.46(4)°, Z = 2) and [(C5H5N)2CH2][PtF5Cl] ( 3 ) (orthorhombic, space group Pnma with a = 10.394(3), b = 13.320(2), c = 9.2694(10) Å, Z = 4), reveal the perfect ordering of the anion sublattice. The stronger trans influence of Cl compared with F is observed in asymmetric axes $ {\rm F}^ \bullet $? Pt? Cl′. The bond lengths Pt? $ {\rm F}^ \bullet $ are 0.026 Å (1.4%) longer and the Pt? Cl′ distances are 0.078 Å (3,3%) shorter in comparison with those of symmetrically coordinated axes. The weakening of the Pt? $ {\rm F}^ \bullet $ bond and the strengthening of the Pt? Cl′ bond is better recognizable from shifts of the stretching vibrations by 8% to lower and by 13% to higher frequencies, respectively. Correspondingly, the valence force constants are found to be 15% lower and 22% higher. The trans influence is observed most distinctly in the 19F-nmr spectra exhibiting the coupling constant 1J($ {\rm F}^ \bullet $Pt) to be 29% smaller than 1J(FPt).  相似文献   

14.
Using X-ray analysis, we have determined the crystal structure of di(1-n-dodecylpyridine) decahydrocloso-decaborate(2-), (py-C12H25)2[B10H10] (I), a yellow salt-like substance obtained by reaction of (py-C12H25)Br and K2[B10H10] in an aqueous solution. Compound I melts at 1250 without decomposition and luminesces under ultraviolet radiation (λmax=555 nm at 298 K). In I, quaternary pyridine bases, containing a hydrocarbon radical with the C12 chain, are combined with the closo-cluster hydroborate anion [B10H10]2-. This results in a charge transfer structure having shortened nonvalent (equatorial B) H.…H(C of pyridine) contacts of 2.41(8) Å. Crystals I are orthorhombic with a=8.584 (1), b=7.739(1), c=31.183(5) Å, Vcell=2071.4(5) Å3, space group Pnmm, Z=2, dcalc=0.986 g/cm3 (a Syntex P21 automatic diffractometer, λCUKα, Nmsd/used=1654/711, Raniso=0.076, Rw=0.080, w=1/(σ(Fobs)2+0.0007·F obs 2 ). Substantial changes are observed in the vibration range of the valent B?H bonds in the IR spectrum of I as compared to that of pure ionic K2[B10H10], confirming the interaction.  相似文献   

15.
Crystalline thallium(I) alkylxanthate complexes [Tl{S(S)COR}]n (R = C2H5, i-C3H7, i-C4H9, s-C4H9, and C5H11) and isotope-substituted heteropolynuclear Cu(II)Tl(I) complexes [63(65)CuTl6(S2COR)8] (R= i-C4H9 and C5H11) were obtained and studied by ESR and high-resolution solid-state 13C CP/MAS NMR spectroscopy. According to the 13C NMR data, polynuclear thallium(I) complexes contain structurally equivalent alkylxanthate ligands. The ESR study revealed the Jahn-Teller dynamic effect in Cu(II)Tl(I) complexes; the nuclei of six Tl atoms are involved in the hyperfine interaction.Translated from Koordinatsionnaya Khimiya, Vol. 31, No. 1, 2005, pp. 48–54.Original Russian Text Copyright © 2005 by Ivanov, Bredyuk, Antzutkin, Forsling.  相似文献   

16.
Preparation, Spectroscopic Characterization, and Crystal Structures of [(C5H5N)2CH2][PtCl5(SCN)] and cis -[(C5H5N)2CH2][PtCl4(SCN)2] By treatment of [PtCl6]2– with SCN in aqueous solution a mixture of chlorothiocyanatoplatinates(IV) is formed, from which [PtCl5(SCN)]2– and cis-[PtCl4(SCN)2]2– have been separated by ion exchange chromatography on diethylaminoethyl cellulose. X-Ray structure determinations on single crystals of [(C5H5N)2CH2][PtCl5(SCN)] ( 1 ) (tetragonal, space group P 43, a = 7.687(1), c = 29.698(4), Z = 4) and cis-[(C5H5N)2CH2][PtCl4(SCN)2] ( 2 ) (monoclinic, space group P 21/n, a = 11.2467(9), b = 15.0445(10), c = 11.3179(13), β = 92.840(9)°, Z = 4) show, that the thiocyanate groups are coordinated via S atoms with average Pt–S distances of 2.339 Å and Pt–S–C angles of 104.7° up to 107.1°. Using the molecular parameters of the X-ray determinations the low temperature (10 K) IR and Raman spectra have been assigned by normal coordinate analyses. The valence force constants of the S–Pt–Cl˙ axes are fd(PtS) = 1.81 ( 1 ) and 1.87 ( 2 ), fd(PtCl × ) = 1.77 ( 1 ) and 1.81 ( 2 ), of the Cl–Pt–Cl axes are fd(PtCl) = 1.93 ( 1 ) and 1.90 mdyn/Å ( 2 ). The 195Pt NMR spectra from dichlormethane solutions exhibit each one sharp signal at 3975.6 ( 1 ) and 3231.6 ppm ( 2 ), respectively.  相似文献   

17.
Summary Two novel charge-transfer (CT) heteropoly complexes, (C8H12N2)5H7PMo12O40 (1) and (C8H12N2)3H3-PMo12O40·5H2O (2), prepared by reacting p-Me2NC6H4NH2 with the four-electron heteropoly blue H7PMo12O40·12H2O and heteropoly acid H3PMo12O40· xH2O, respectively, were characterized by elemental analysis, and u.v., i.r., XPS and e.s.r. spectroscopies. A sizable electron-transfer interaction occurs within the product molecules and the heteropoly anions retain their Keggin structure. Their third-order optical non-linearity coefficients were measured using the Z-scan technique at a concentration of 4.68 × 10−6 mol dm−3 for (1) and 2.79 × 10−6 mol dm−3 for (2), with I 0 = 2.38 × 1013 w m−2 and λ = 532nm. The |χ(3)| for (1) is 2.61 × 10−10 esu and |χ(3)| for (2) is 1.05 × 10−10 esu.  相似文献   

18.
Conclusions The authors have synthesized anilinium chloranilate (NH3C6H5)2(C6O4Cl2) (I) and acid ammonium chloranilate dihydrate NH4H5O2(C6O4C12) (II). By x-ray structural analysis they have established their crystal structures. In crystals of NH4H5O2(C6O4Cl2) they find the ion H5O 2 + with the unusual O-H-O bond length of 2.81 A. The anions of chloranilic acid in crystals (I) and (II) have equal charges but different structures.Translated from IzvestiyaAkademii Nauk SSSR, Seriya Khimicheskaya, No. 3, pp. 487–489, March, 1981.  相似文献   

19.
Conclusions The M-Hg bond in the compounds C5H5M(CO)nHgX (M=Fe, Mo, W; X=Hal, C5H5M(CO)n) is cleaved on treatment with halogens (Cl2, Br2, I2), with replacement of the mercury by halogen.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 12, pp. 2796–2797, December, 1972.  相似文献   

20.
Triorganoantimony and Triorganobismuth Derivatives of 2-Pyridinecarboxylic Acid and 2-Pyridylacetic Acid. Crystal and Molecular Structures of (C6H5)3Sb(O2C-2-C5H4N)2 and (CH3)3Sb(O2CCH2-2-C5H4N)2 Triorganoantimony and triorganobismuth dicarboxylates R3M(O2C-2-C5H4N)2 (M = Sb, R = CH3, C6H5, 4-CH3OC6H4; M = Bi, R = C6H5, 4-CH3C6H4) and (CH3)3Sb(O2CCH2-2-C5H4N)2 have been prepared from (CH3)3Sb(OH)2, R3SbO (R = C6H5, 4-CH3OC6H4), or R3BiCO3 (R = C6H5, 4-CH3C6H4) and the appropriate heterocyclic carboxylic acid. Vibrational spectroscopic data indicate a trigonal bipyramidal environment of M the O(? C)-atoms of the carboxylate ligands being in the apical and three C atoms (of R) in the equatorial positions; in addition coordinative interaction occurs in the 2-pyridinecarboxylates between M and O(?C) of one and N of the other carboxylate ligand and in (CH3)3)Sb(O2CCH2-2-C5H4N)2 between Sb and O(?C) of both carboxylate ligands. (C6H5)3Sb(O2C-2-C5H4N)2/(CH3)3Sb(O2CCH2-2-C5H4N)2 crystallize monoclinic [space group P21/c/P21/n; a = 892.6(9)/1043.4(6), b = 1326.9(6)/3166.2(18), c = 2233.1(9)/1147.5(7) pm, β = 99.74(8)°/97.67(5)° Z = 4/8; d(calc.) = 1.522/1.553 × Mg m?3; Vcell = 2606.7 × 106/3757.0 × 106pm3, structure determination from 3798/4965 independent reflexions (F ≥ 4.0 σ(F))/(I ≥ 1.96 σ(I), R(unweighted) = 0.024/0.036]. Sb is bonding to three C6H5/CH3 groups in the equatorial plane [mean distances Sb? C: 212.2(3)/208.7(6) pm] and two carboxylate ligands via O in the apical positions [Sb? O distances: 218.5(2), 209.9(2)/212.1(3), 213.2(3) pm]. In (C6H5)3Sb(O2C-2-C5H4N)2 there is a short Sb? O(?C) and a short Sb? N contact [Sb? O: 272.1(2), Sb? N: 260.2(2) pm] and distoritions of the equatorial angles [C? Sb? C: 99.2(1)°, 158.2(1)°, 102.0(1).] and of the axial angle [O? Sb? O: 169.9(1)°], and in (CH3)3Sb(O2CCH2-2-C5H4N)2, which contains two different molecules in the asym-metric unit, there are two Sb? O(?C) contacts [Sb? O, mean: 302.2(4), and 310.7(4)pm, respectively] and distortions of the equatorial angles [C? Sb? C: 114.5(2)°, 132.4(3)° 113.1(2)°, and 123.9(3)° 115.5(2)°, 120.6(3)°, respectively] and of the axial angles [O? Sb? O: 174,9(1)°, 177.9(1)°, respectively].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号