首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用电聚合方法制备了聚中性红修饰电极,通过扫描电子显微镜(SEM)、能谱仪(EDS)、傅里叶变换红外光谱(FTIR)等表征手段对电极材料的微观结构与组成进行研究。为进一步考察聚中性红修饰电极对微生物燃料电池(MFC)脱氮产电性能的影响,构建了各种不同微生物燃料电池。实验表明,聚中性红修饰阴极微生物燃料电池(CPNR-MFC)具有最强的脱氮和产电性能,其次为聚中性红修饰阳极微生物燃料电池(APNR-MFC)。在不同进水硝氮浓度下,实验组MFCs对硝氮的去除率均达到90%以上,CPNR-MFC具有0.040kg ·m-3·d-1的最大硝氮去除速率和15.29 W·m-3的最大功率密度,较对照组分别提高14.29%和82.51%,而APNR-MFC仅分别提高5.71%和31.93%。通过对比MFCs的电化学特性和微生物特征,探究了聚中性红修饰电极对MFCs性能影响的机理。  相似文献   

2.
同步脱氮除硫工艺以硝态氮作为电子受体,硫化物作为电子供体,通过以废治废,去除氮硫污染物。本文构建了双室型微生物燃料电池(microbial fuel cell,MFC),将同步脱氮除硫工艺与MFC相结合,在处理废水的同时生产电能。与化学对照组相比,该同步脱氮除硫MFC具有高基质去除性能和产电性能。当进水硝态氮和硫化物的浓度分别为95.54和540 mg·L-1,反应时间为20 h时,硝态氮和硫化物的去除率分别高达96.50%和99.64%;最大电流密度达457.20 mA·m-2,稳定电流密度为30.33 mA·m-2。通过循环伏安法、极化曲线法和电化学阻抗分析,探究了同步脱氮除硫MFC的电化学特性。结果表明,在同步脱氮除硫MFC电极上,同步发生了脱氮除硫反应,该MFC最大功率密度为75.70 mW·m-3,内阻约为2 474 Ω,其对同步脱氮除硫MFC电化学性能具有制约作用。  相似文献   

3.
以比表面积为1 572 m2·g-1的粉末活性炭为参照, 研究了水稻秸秆于350和500 ℃灼烧产生的灰对双酚A的吸附性能, 为认识和利用水稻秸秆灰去除水中有机微污染物提供参考. 结果显示, 水稻秸秆灰对双酚A的去除过程符合两室模型, 其快吸附阶段在2 h内平衡, 慢吸附阶段需5~7 d才能平衡, 慢于活性炭的吸附平衡过程(需2.5 h). 水稻秸秆灰的吸附等温线符合Dubinin- Ashtakhov模型, 单位质量的最大吸附容量为18.0 mg·g-1 (350℃灰分)和10.3 mg·g-1 (500℃灰分), 是活性炭(245 mg·g-1)的4.2%~7.3%; 单位比表面积的最大吸附容量为1.81 mg·m-2 (350 ℃灰分)和1.68 mg·m-2 (500 ℃灰分), 是活性炭(0.156 mg·m-2)的11~12倍, 表明水稻秸秆灰是一种单位比表面吸附效率较高的双酚A吸附剂.  相似文献   

4.
利用复苏促进因子(resuscitation-promoting factor,Rpf)促进活的但不可培养 (viable but non-culturable,VBNC)的细菌复苏和生长的特性,通过序列间歇式活性污泥法(SBR)实验,探究用Rpf增效粉末活性炭活性污泥工艺(powder activated carbon treatmeat,PACT)处理印染废水的最佳工况,同时研究了Rpf对活性污泥的强化机理和对微生物的影响。实验选用302型木质粉末活性炭(PAC),得到最佳投加条件为PAC 30 mg·L-1·d-1,Rpf 6 mg·L-1·(3 d)-1。实验表明,PAC和Rpf具有协同作用,可改善污泥的沉降性能,增强传统PACT的生化处理能力,提高活性污泥微生物的多样性,增大种群丰度,使系统稳定高效运行。  相似文献   

5.
为了提高硫氧镁基仿木保温材料的各项性能, 分别研究了相同长度的聚丙烯纤维(PPF)、聚乙烯醇纤维(PVAF)、玻璃纤维(GF)对其性能的影响. 结果表明: 随着纤维掺量的增加, 硫氧镁基仿木保温材料的流动性有所降低; GF对其抗压抗折强度的提高效果最明显, 其中GF掺量为1.0 kg·m-3时早期抗压强度最高, PVAF掺量为0.5 kg·m-3时其早期抗压强度最高; PPF明显提高了硫氧镁基仿木保温材料的耐水性, 其掺量为0.5 kg·m-3时软化系数最大, 而GF掺量在1.0 kg·m-3时, 浸水软化系数稍高于未加纤维的对比试件; 掺加PVAF后硫氧镁基保温材料的导热系数出现一定程度的降低, 其中PVAF掺量在1.5 kg·m-3时其导热系数最低. GF和PPF可以明显地降低硫氧镁基仿木保温材料的收缩值, 其中GF降低自收缩效果较好, 而PPF可以明显地降低其干燥收缩值.  相似文献   

6.
利用太阳能驱动的光催化产氢技术是解决能源短缺和环境污染的重要途径。选用天然矿物红黏土(R-Clay)为前驱体,将其在氮气氛、400℃热处理后(标记为R-Clay400),用于可见光(λ≥420 nm)条件下分解水制备氢气。结果表明,R-Clay经热改性后,其结构及微观形貌发生了改变,比表面积增大,表面羟基(—OH)显著减少,氧空位增多,带隙能减小,且其产氢活性显著提升,R-Clay400的产氢效率(28.634μmol·g-1·h-1)是R-Clay(12.620μmol·g-1·h-1)的2.27倍。X光电子能谱证实热改性后R-Clay的氧空位相对含量增加了13.2%,荧光光谱及电化学阻抗谱结果显示R-Clay400电子-空穴复合率及界面电荷阻力均较R-Clay降低,因而其光催化产氢性能得到提升。  相似文献   

7.
利用在线监测仪测量了杭州市一次重灰霾过程(2017年12月29日至2018年1月3日)中PM2.5主要水溶性离子(Cl-、SO42-、NO3-、NH4+、Na+、Ga2+、Mg2+)及主要气态污染物(SO2、NO2、O3、NO、CO、HCl、NH3、HNO2、HNO3)的小时浓度。结合混合受体模型和国控监测分析,研究了2017年12月30-31日重灰霾事件的污染特征、来源和成因。研究结果表明:PM2.5浓度高达318 μg·m-3; NO3-/SO42-最大值为2.68,说明移动源污染是杭州市PM2.5形成的重要来源; PM2.5/CO最高达到0.19,说明二次细颗粒物对PM2.5贡献很大;NO3-、SO42-、NH4+的浓度总和占PM2.5平均浓度的64.3%,说明二次无机细颗粒物是杭州重灰霾形成的重要原因,且NO3-的贡献最大,占33.5%。混合受体模型分析显示,杭州市重灰霾污染的潜在源区主要位于安徽、江苏、河南、山东四省交界处,以及安徽省中东部、蚌埠、芜湖等工业污染较为严重的城市。夹杂着大量污染物的北方干冷空气远距离传输叠加部分局地源是杭州此次重雾霾形成的根本原因。因此,为了改善杭州市空气质量,不仅需控制当地的污染物排放,而且还需对整个长三角地区甚至跨区域采取大气联防联控策略。  相似文献   

8.
有机固体废物进行多组分协同厌氧发酵可以产生清洁能源气体,从而达到资源化处理的目的.本文通过设置不同进料有机负荷及回流比,分析餐厨垃圾协同水葫芦厌氧产氢过程中产气量、氢气含量、SCOD、挥发性脂肪酸(VFAs)、pH及氨氮(NH+-N)各参数的变化.结果显示,高有机负荷和高回流比会导致系统的VFAs累积,使系统pH值降到5.0以下;进料有机负荷对于餐厨垃圾协同水葫芦厌氧产氢的影响更大,系统内的氨氮浓度及SCOD浓度均与进料有机负荷呈正相关;当进料有机负荷为10 kg·m-3·d-1、回流比为30%时,系统产氢效果最好,累计产气量为80 946 m L,氢气含量为35.83%.本研究结果可为有机固体废物资源化处理提供参考.  相似文献   

9.
建立了一种离子色谱-抑制电导同时测定植物生长调节剂中主要活性成分氯化胆碱、甲哌鎓以及杂质N-甲基哌啶的快速检测方法。 样品经稀释过膜后直接进样分析, 采用阳离子交换色谱柱thermo scientific ionpac CG17 (50 mm×4 mm) + CS17 (250 mm×4 mm),以10 mmol·L-1甲烷磺酸溶液等度淋洗,可在10 min内完成以上目标分析物的检测,且常规阳离子(Li+、 Na+、 NH4+、 K+、 Mg2+和Ca2+)不会干扰对3种化合物的测定。 在优化后的最佳色谱条件下,氯化胆碱的线性范围为0.1~500 mg·L-1,甲哌鎓的线性范围为0.5~500 mg·L-1,N-甲基哌啶的线性范围为0.4~200 mg·L-1,3种化合物线性相关系数(r)均大于0.999 4,线性关系良好。 3种目标分析物的检出限(信噪比S/N = 3)为28.0~112.5 μg·L-1,定量限(信噪比S/N = 10)为93.5~375.0 μg·L-1,峰面积的相对标准偏差(RSD, n = 6)均小于0.47%,表明方法具有较好的重现性。 该检测方法简单方便,已成功应用于商品化植物生长调节剂中3种成分质量浓度的测定,实际样品加标回收率为96.0%~103.6%。 可应用于相关植物生长调节剂原料及成品的质量控制。  相似文献   

10.
建立了一种离子色谱-抑制电导同时测定植物生长调节剂中主要活性成分氯化胆碱、甲哌鎓以及杂质N-甲基哌啶的快速检测方法。 样品经稀释过膜后直接进样分析, 采用阳离子交换色谱柱thermo scientific ionpac CG17 (50 mm×4 mm) + CS17 (250 mm×4 mm),以10 mmol·L-1甲烷磺酸溶液等度淋洗,可在10 min内完成以上目标分析物的检测,且常规阳离子(Li+、 Na+、 NH4+、 K+、 Mg2+和Ca2+)不会干扰对3种化合物的测定。 在优化后的最佳色谱条件下,氯化胆碱的线性范围为0.1~500 mg·L-1,甲哌鎓的线性范围为0.5~500 mg·L-1,N-甲基哌啶的线性范围为0.4~200 mg·L-1,3种化合物线性相关系数(r)均大于0.999 4,线性关系良好。 3种目标分析物的检出限(信噪比S/N = 3)为28.0~112.5 μg·L-1,定量限(信噪比S/N = 10)为93.5~375.0 μg·L-1,峰面积的相对标准偏差(RSD, n = 6)均小于0.47%,表明方法具有较好的重现性。 该检测方法简单方便,已成功应用于商品化植物生长调节剂中3种成分质量浓度的测定,实际样品加标回收率为96.0%~103.6%。 可应用于相关植物生长调节剂原料及成品的质量控制。  相似文献   

11.
采用基于密度泛函理论的M06方法,研究了气相环境下2种稳定构型的丙氨酸(Ala)与Ca2+配合物的手性转变及水分子的催化。研究发现,Ala_1·Ca2+的手性转变有a和b 2个通道,a通道是α-氢只以羰基氧为桥迁移;b通道是α-氢迁移到羰基氧后,氨基上的质子在纸面内侧向α-碳迁移。Ala_2·Ca2+的手性转变有a、b、c、d 4个通道,a和b通道分别是羧基内质子迁移后,α-氢只以羰基氧为桥迁移和α-氢迁移到羰基氧接质子从氨基氮向α-碳迁移;c通道是钙与氮的配位键断裂后,α-氢向氨基氮迁移;d通道是钙与氮的配位键断裂后,Ala_2·Ca2+向Ala_1·Ca2+异构,再接Ala_1·Ca2+的手性转变。势能面计算表明,Ala_1·Ca2+手性转变的a通道具有优势,总包能垒为134.8 kJ·mol-1,Ala_2·Ca2+手性转变的d通道具有优势,总包能垒为235.3 kJ·mol-1;水分子的催化使能垒分别降至40.8和141.3 kJ·mol-1。结果表明,Ca2+对Ala的手性转变具有催化作用,水分子对丙氨酸Ca2+配合物的手性转变具有极好的催化作用。  相似文献   

12.
采用基于密度泛函理论的M06方法,研究了气相环境下2种稳定构型的丙氨酸(Ala)与Ca2+配合物的手性转变及水分子的催化。研究发现,Ala_1·Ca2+的手性转变有a和b 2个通道,a通道是α-氢只以羰基氧为桥迁移;b通道是α-氢迁移到羰基氧后,氨基上的质子在纸面内侧向α-碳迁移。Ala_2·Ca2+的手性转变有a、b、c、d 4个通道,a和b通道分别是羧基内质子迁移后,α-氢只以羰基氧为桥迁移和α-氢迁移到羰基氧接质子从氨基氮向α-碳迁移;c通道是钙与氮的配位键断裂后,α-氢向氨基氮迁移;d通道是钙与氮的配位键断裂后,Ala_2·Ca2+向Ala_1·Ca2+异构,再接Ala_1·Ca2+的手性转变。势能面计算表明,Ala_1·Ca2+手性转变的a通道具有优势,总包能垒为134.8 kJ·mol-1,Ala_2·Ca2+手性转变的d通道具有优势,总包能垒为235.3 kJ·mol-1;水分子的催化使能垒分别降至40.8和141.3 kJ·mol-1。结果表明,Ca2+对Ala的手性转变具有催化作用,水分子对丙氨酸Ca2+配合物的手性转变具有极好的催化作用。  相似文献   

13.
采用电沉积法制备了Ni(OH)2、Ni3N、Ni3S2 3种不同阴离子型配体的镍基化合物,并对比了其在水系碱性电池中的储OH-性能。研究发现,在循环过程中,Ni3S2表现出最高的初始放电容量(230 mAh/g),扫描200圈后为115 mAh/g;而Ni3N表现出最高的库仑效率(98.5%)。分析其原因,典型的电池型Ni(OH)2材料在OH-脱嵌过程中伴随着晶体结构的坍塌,造成循环性能和离子迁移能力快速下降;而兼具赝电容特性的Ni3S2和Ni3N因无定形的脱嵌过程缓解了结构的坍塌,从而获得较高的电化学储OH-性能。  相似文献   

14.
采用密度泛函理论的明尼苏达泛函2006(M06)和明尼苏达泛函2015(MN15)方法,结合自洽场理论的溶质全电子密度溶剂化(solvation model based on desity,SMD)模型,研究了水液相下两性α-丙氨酸二价锰配合物(Mn(Ⅱ))的旋光异构。研究结果表明,S-Ala·Mn2+S-Mn(Ⅱ))可在a、b、c和d 4个通道旋光异构,a通道H以O为桥迁移,b通道H以O和N顺次为桥迁移,c通道H以N为桥迁移,d通道H以Mn(Ⅱ)为桥迁移。势能面计算结果表明,c通道最具优势,决速步能垒为220.8 kJ·mol-1;a和b通道同为亚优势通道,决速步能垒为254.8 kJ·mol-1;d通道为劣势通道,决速步能垒为293.3 kJ·mol-1。在水分子(簇)作用下,c通道决速步能垒降至155.1 kJ·mol-1;a和b通道决速步能垒降至165.8 kJ·mol-1;d通道仍为劣势通道,且S-A·Mn无法在该通道旋光异构。水液相下S-A·Mn很难消旋,Mn(Ⅱ)用于生命体补充二价锰和α-丙氨酸具有较好的安全性。  相似文献   

15.
利用在线监测仪测量了杭州市一次重灰霾过程(2017年12月29日至2018年1月3日)中PM2.5主要水溶性离子(Cl-、SO42-、NO3-、NH4+、Na+、Ga2+、Mg2+)及主要气态污染物(SO2、NO2、O3、NO、CO、HCl、NH3、HNO2、HNO3)的小时浓度。结合混合受体模型和国控监测分析,研究了2017年12月30-31日重灰霾事件的污染特征、来源和成因。研究结果表明:PM2.5浓度高达318 μg·m-3; NO3-/SO42-最大值为2.68,说明移动源污染是杭州市PM2.5形成的重要来源; PM2.5/CO最高达到0.19,说明二次细颗粒物对PM2.5贡献很大;NO3-、SO42-、NH4+的浓度总和占PM2.5平均浓度的64.3%,说明二次无机细颗粒物是杭州重灰霾形成的重要原因,且NO3-的贡献最大,占33.5%。混合受体模型分析显示,杭州市重灰霾污染的潜在源区主要位于安徽、江苏、河南、山东四省交界处,以及安徽省中东部、蚌埠、芜湖等工业污染较为严重的城市。夹杂着大量污染物的北方干冷空气远距离传输叠加部分局地源是杭州此次重雾霾形成的根本原因。因此,为了改善杭州市空气质量,不仅需控制当地的污染物排放,而且还需对整个长三角地区甚至跨区域采取大气联防联控策略。  相似文献   

16.
为考察零价铁(Fe0)修复Ni2+污染水体的效果及同步修复Ni2+和有机氯的可能性,考察了Fe0对水中Ni2+的去除效果及Ni2+对有机氯脱氯的催化作用.实验结果表明,Fe0除镍反应符合拟一级反应动力学特征,表观反应速率常数(kobs)随铁粉颗粒粒径的减小而增大,铁粉颗粒粒径由2.000~0.425,0.425~0.150,0.150~0.075减小到<0.075 mm时,kobs值相应由0.022 3,0.053 8,0.104 8增加到0.155 0 min-1;在考察的pH范围(2.5~10.0)内,零价铁对Ni2+保持着较高的反应速率,在酸性条件下,反应速率随着pH值的升高而降低.Fe0同步修复Ni2+和含氯有机物时,含氯有机物的存在并没有对Ni2+的去除产生很大影响,但镍的存在对Fe0脱氯具有较好的催化作用. 同时,在考察的280 h内铁粉填充柱对水中的Ni2+保持着较高的去除效率(>80%),这为Fe0修复技术的实际应用奠定了基础.  相似文献   

17.
将核桃壳等可再生资源转化为能源或化工产品,是双碳目标的指引方向之一。核桃壳炭是核桃壳快速热解制备生物油的固体残渣,由于其低比表面积和较差的孔隙率,难以直接使用。用FeCl3活化剂对核桃壳炭进行改性,并将其与常用的KOH改性做对比,通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、BET方法、拉曼光谱、N2等温吸脱附曲线等系列表征,发现相较核桃壳炭,改性核桃壳炭的石墨化程度有所提高,其中,用FeCl3改性的核桃壳炭的比表面积由1.6 cm2·g-1提高至377 cm2·g-1,孔容由0.004 6 cm3·g-1提高至0.074 cm3·g-1,呈现丰富的海绵状孔结构,且收率(61.2%)高于用KOH改性的核桃壳炭(35.8%)。将用FeCl3改性的核桃壳炭负载的碳化钼催化剂用于玉米油加氢脱氧反应,玉米油转化率和烃类产率分...  相似文献   

18.
将Co基金属有机框架材料(二甲基咪唑钴,ZIF-67)与多巴胺经原位吸附、聚合、碳化、活化,制备高吡啶氮、石墨氮掺杂的中空环形碳(N-doped hollow cycle-like carbon,NHCC),并考察了其氧催化性能。结果表明,最优条件制备的NHCC-0.4氧还原反应(oxygen reduction reaction,ORR)半波电位0.782 V;氧析出反应(oxygen evolution reaction,OER)达到10mA/cm2的电流密度,过电位为277 mV,低于同载量标准催化剂RuO2(341 mV);同时,其电位差值(0.725 V)低于标准催化剂电对Pt/C||RuO2(0.755 V),表明具备优异的可逆充放电性能。以NHCC-0.4||NHCC-0.4为空气电极的锌-空电池开路电位1.445 V、功率密度138 mW/cm2,可逆充放电循环老化电位差稳定于1.01 V,显著优于标准催化剂Pt/C||RuO2空气电极(1.348 V,108 ...  相似文献   

19.
以污泥∶底泥∶粉煤灰=5∶3∶2、烧制温度1 130 ℃、保温时间20 min制备污泥陶粒(sewage sludge ceramsite,SSC),SSC粗糙多孔,内部孔隙率和孔容分别为36.5%和0.243 2 cm3·g-1,适合微生物的吸附与固定。基于SSC构建了曝气生物滤池(SSC-BAF),并与基于市售陶粒(commerically ceramsite,CTC)构建的曝气生物滤池(CTC-BAF)进行了对比,研究了在不同气水比和水力停留时间下SSC-BAF反应器对喷水织造废水的处理情况。根据COD、石油类、浊度的去除效果,确定了SSC-BAF反应器的最佳气水比为5∶1,水力停留时间为6 h,此时对COD、石油类、浊度的去除率分别为86.87%,89.91%,96.70%,优于CTC-BAF对COD、石油类、浊度的去除率85.28%,86.76%,96.17%。  相似文献   

20.
2020年9月对梅山岛附近海域的大型底栖动物和游泳动物进行了定量调查,分析了梅山岛附近海域大型底栖动物和游泳动物的群落组成和数量特征,包括群落种类组成、丰度、生物量和优势种,并对大型底栖动物和游泳动物的群落组成、数量特征与水深、悬浮物、营养盐等重要环境因子进行了相关性分析.结果表明:梅山岛附近海域共有大型底栖动物5门16种,其中环节动物门5种、软体动物和节肢动物门各4种、棘皮动物门2种、脊索动物门1种;梅山岛附近海域大型底栖动物平均丰度为12.73 ind·m-2,平均生物量为2.87 g·m-2,其中纵肋织纹螺(Nassarius variciferus)为研究海域唯一的优势种.游泳动物共有55种,其中鱼类29种、甲壳动物23种、软体动物门中头足纲动物2种、腔肠动物1种;游泳动物在整个研究海域的尾数密度为24.77×103ind·km-2,重量密度为144.53 kg·km-2;游泳动物优势种共9种,其中龙头鱼(Harpadon nehereus)的优势度最高,口虾蛄(Ora...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号