首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Retinal normally binds opsin forming the chromophore of the visual pigment, rhodopsin. In this investigation synthetic analogs were bound by the opsin of living cells of the alga Chlamydomonas reinhardtii; the effect was assayed by phototaxis to give an activation spectrum for each rhodopsin analog. The results show the influence of different chromophores and the protein on the absorption of light. The maxima of the phototaxis action spectra shifted systematically with the number of double bonds conjugated with the imine (C = N+H) bond of the chromophore. Chromophores lacking a beta-ionone ring, methyl groups and all C = C double bonds photoactivated the rhodopsin of Chlamydomonas with normal efficiency. On the basis of a simple model involving one-electron transitions between occupied and virtual molecular orbitals, we estimate the charge distribution along the chromophore in the binding site. With this restraint we define a unique structural model for eukaryotic rhodopsins and explain the spectral clustering of pigments, the spectral differences between red and green rhodopsins and the molecular basis of color blindness. Our results are consistent with the triggering of the activation of rhodopsin by the light-mediated change in electric dipole moment rather than the steric cis-trans isomerization of the chromophore.  相似文献   

2.
Abstract— The excited-state dynamics of bacteriorhodopsin was studied by molecular dynamics simulation. For the purpose of suppressing large displacement of amino acid residues on the surface of bacteriorhodopsin, positional restraints were imposed on these residues. A new method was developed to investigate the movement of amino acid residues upon photoexcitation and their role on the ultrafast photoisomerization of the chromophore. The structural change of bacteriorhodopsin was then traced up to 200 fs, i.e. until the formation of the intermediate I. We found that when all the conjugated bonds of the chromophore were allowed to twist freely in the excited state, many bonds including the C13=C14 bond twist in large scale within 100 fs. When only the C13=C14 bond and the single bonds were allowed to twist freely, the twisting took place at most 20° within 200 fs. From these results, it is claimed that a special potential surface is provided for the C13=C14 bond twisting by the protein environment in the course of the isomerization reaction, giving rise to the specific, ultrafast photoisomerization of bacteriorhodopsin. As a trace of such a mechanism, we observed that several functionally important residues incuding Asp85, Asp212 and Tyr185 responded quickly to the photoexcitation of the chromophore.  相似文献   

3.
Ring-fused retinal analogs were designed to examine the hula-twist mode of the photoisomerization of the 9-cis retinylidene chromophore. Two 9-cis retinal analogs, the C11-C13 five-membered ring-fused and the C12-C14 five-membered ring-fused retinal derivatives, formed the pigments with opsin. The C11-C13 ring-fused analog was isomerized to a relaxed all-trans chromophore (lambda(max) > 400 nm) at even -269 degrees C and the Schiff base was kept protonated at 0 degrees C. The C12-C14 ring-fused analog was converted photochemically to a bathorhodopsin-like chromophore (lambda(max) = 583 nm) at -196 degrees C, which was further converted to the deprotonated Schiff base at 0 degrees C. The model-building study suggested that the analogs do not form pigments in the retinal-binding site of rhodopsin but form pigments with opsin structures, which have larger binding space generated by the movement of transmembrane helices. The molecular dynamics simulation of the isomerization of the analog chromophores provided a twisted C11-C12 double bond for the C12-C14 ring-fused analog and all relaxed double bonds with a highly twisted C10-C11 bond for the C11-C13 ring-fused analog. The structural model of the C11-C13 ring-fused analog chromophore showed a characteristic flip of the cyclohexenyl moiety toward transmembrane segments 3 and 4. The structural models suggested that hula twist is a primary process for the photoisomerization of the analog chromophores.  相似文献   

4.
To understand how the protein achieves fluorescence, the isomerization mechanism of the HcRed chromophore is studied both under vacuum and in the solvated red fluorescent protein. Quantum mechanical (QM) and quantum mechanical/molecular mechanical (QM/MM) methods are applied both for the ground and the first excited state. The photoinduced processes in the chromophore mainly involve torsions around the imidazolinone-bridge bond (τ) and the phenoxy-bridge bond (φ). Under vacuum, the isomerization of the cis-trans chromophore essentially proceeds by τ twisting, while the radiationless decay requires φ torsion. By contrast, the isomerization of the cis-trans chromophore in HcRed occurs via simultaneous τ and φ twisting. The protein environment significantly reduces the barrier of this hula twist motion compared with vacuum. The excited-state isomerization barrier via the φ rotation of the cis-coplanar conformer in HcRed is computed to be significantly higher than that of the trans-non-coplanar conformer. This is consistent with the experimental observation that the cis-coplanar-conformation of the chromophore is related to the fluorescent properties of HcRed, while the trans-non-planar conformation is weakly fluorescent or non-fluorescent. Our study shows how the protein modifies the isomerization mechanism, notably by interactions involving the nearby residue Ile197, which keeps the chromophore coplanar and blocks the twisting motion that leads to photoinduced radiationless decay.  相似文献   

5.
[formula: see text] The conformation of the retinal chromophore in rhodopsin is central for understanding the visual transduction process. The absolute twist around the 12-s bond of the chromophore in rhodopsin has been determined by studies with 11-cis-locked 11,12-cyclopropylretinal analogues (11S,12R)-2 and (11R,12S)-3, enantioselectively synthesized with the aid of an enzyme. The finding that enantiomer 2 binds to opsin while the other 3 does not defines the absolute sense of twist around the 12-s bond.  相似文献   

6.
In a model calculation pulli 11-cis retinal (9-cis retinal) from both end sides, the 11–12 double bond (9–10 double bond) is found to be selectively twisted. This property is promising for the twisting mechanism of retinal chromophore in visual pigment as assumed by the Kakitani and Kakitani torsion model.  相似文献   

7.
We have obtained carbon-carbon bond length data for the functional retinylidene chromophore of rhodopsin, with a spatial resolution of 3 pm. The very high resolution was obtained by performing double-quantum solid-state NMR on a set of noncrystalline isotopically labelled bovine rhodopsin samples. We detected localized perturbations of the carbon-carbon bond lengths of the retinylidene chromophore. The observations are consistent with a model in which the positive charge of the protonated Schiff base penetrates into the polyene chain and partially concentrates around the C13 position. This coincides with the proximity of a water molecule located between the glutamate-181 and serine-186 residues of the second extracellular loop, which is folded back into the transmembrane region. These measurements support the hypothesis that the polar residues of the second extracellular loop and the associated water molecule assist the rapid selective photoisomerization of the retinylidene chromophore by stabilizing a partial positive charge in the center of the polyene chain.  相似文献   

8.
Photochemistry in retinal proteins (RPs) is determined both by the properties of the retinal chromophore and by its interactions with the surrounding protein. The initial retinal configuration, and the isomerization coordinates active in any specific protein, must be important factors influencing the course of photochemistry. This is illustrated by the vast differences between the photoisomerization dynamics in visual pigments which start 11-cis and end all-trans, and those observed in microbial ion pumps and sensory rhodopsins which start all-trans and end in a 13-cis configuration. However, isolating these factors is difficult since most RPs accommodate only one active stable ground-state configuration. Anabaena sensory rhodopsin, allegedly functioning in cyanobacteria as a wavelength sensor, exists in two stable photoswitchable forms, containing all-trans and 13-cis retinal isomers, at a wavelength-dependent ratio. Using femtosecond spectroscopy, and aided by extraction of coherent vibrational signatures, we show that cis-to-trans photoisomerization, as in visual pigments, is ballistic and over in a fraction of a picosecond, while the reverse is nearly 10 times slower and kinetically reminiscent of other microbial rhodopsins. This provides a new test case for appreciating medium effects on primary events in RPs.  相似文献   

9.
The potential-energy surface of the first excited state of the 11-cis-retinal protonated Schiff base (PSB11) chromophore has been studied at the density functional theory (DFT) level using the time-dependent perturbation theory approach (TDDFT) in combination with Becke's three-parameter hybrid functional (B3LYP). The potential-energy curves for torsion motions around single and double bonds of the first excited state have also been studied at the coupled-cluster approximate singles and doubles (CC2) level. The corresponding potential-energy curves for the ground state have been calculated at the B3LYP DFT and second-order M?ller-Plesset (MP2) levels. The TDDFT study suggests that the electronic excitation initiates a turn of the beta-ionone ring around the C6-C7 bond. The torsion is propagating along the retinyl chain toward the cis to trans isomerization center at the C11=C12 double bond. The torsion twist of the C10-C11 single bond leads to a significant reduction in the deexcitation energy indicating that a conical intersection is being reached by an almost barrierless rotation around the C10-C11 single bond. The energy released when passing the conical intersection can assist the subsequent cis to trans isomerization of the C11=C12 double bond. The CC2 calculations also show that the torsion barrier for the twist of the retinyl C10-C11 single bond adjacent to the isomerization center almost vanishes for the excited state. Because of the reduced torsion barriers of the single bonds, the retinyl chain can easily deform in the excited state. Thus, the CC2 and TDDFT calculations suggest similar reaction pathways on the potential-energy surface of the excited state leading toward the conical intersection and resulting in a cis to trans isomerization of the retinal chromophore. According to the CC2 calculations the cis to trans isomerization mechanism does not involve any significant torsion motion of the beta-ionone ring.  相似文献   

10.
Abstract— We significantly improved the analytical method for the study of excited state dynamics of pigments, by means of the time correlation function (tcf) of the vibrational wavepacket which is produced by the Fourier transform of experimentally obtained optical absorption spectra (FTOA). Applying the tcf method to the spectra of rhodopsin at 0°C and -180°C, we observed specific peaks which are slightly different between 0°C and -180°C in the early time region (1–130 fs) of the absolute value of tcf, representing a characteristic propagation of the wavepacket along a reaction coordinate pertinent to the cis-trans photoisomerization of the chromophore accompanying the motion of protein moiety. From the analysis of phase angle propagation, we obtained a rather small relaxation energy, 6–7 kcal/mol. Based on these results, we can say that FTOA analysis is useful as one of the most powerful techniques for the study of very early procedures in the excited state dynamics of pigments.  相似文献   

11.
We considered a series of model systems for treating the photoabsorption of the 11-cis retinal chromophore in the protonated Schiff-base form in vacuum, solutions, and the protein environment. A high computational level, including the quantum mechanical-molecular mechanical (QM/MM) approach for solution and protein was utilized in simulations. The S0-S1 excitation energies in quantum subsystems were evaluated by means of an augmented version of the multiconfigurational quasidegenerate perturbation theory (aug-MCQDPT2) with the ground-state geometry parameters optimized in the density functional theory PBE0/cc-pVDZ approximation. The computed positions of absorption bands lambdamax, 599(g), 448(s), and 515(p) nm for the gas phase, solution, and protein, respectively, are in excellent agreement with the corresponding experimental data, 610(g), 445(s), and 500(p) nm. Such consistency provides a support for the formulated qualitative conclusions on the role of the chromophore geometry, environmental electrostatic field, and the counterion in different media. An essentially nonplanar geometry conformation of the chromophore group in the region of the C14-C15 bond was obtained for the protein, in particular, owing to the presence of the neighboring charged amino acid residue Glu181. Nonplanarity of the C14-C15 bond region along with the influence of the negatively charged counterions Glu181 and Glu113 are found to be important to reproduce the spectroscopic features of retinal chromophore inside the Rh cavity. Furthermore, the protein field is responsible for the largest bond-order decrease at the C11-C12 double bond upon excitation, which may be the reason for the 11-cis photoisomerization specificity.  相似文献   

12.
Spectral shifts of rhodopsin, which are related to variations of the electron distribution in 11‐cis‐retinal, are investigated here using the method of deformed atoms in molecules. We found that systems carrying the M207R and S186W mutations display large perturbations of the π‐conjugated system with respect to wild‐type rhodopsins. These changes agree with the predicted behavior of the bond length alternation (BLA) and the blue shifts of vertical excitation energies of these systems. The effect of the planarity of the central and Schiff‐base regions of retinal chain on the electronic structure of the chromophore is also investigated. By establishing nonlinear polynomial relations between BLA, chain distortions, and vertical excitation energies, we are also able to provide a semiquantitative approach for the understanding of the mechanisms regulating spectral shifts in rhodopsin and its mutants. © 2013 Wiley Periodicals, Inc.  相似文献   

13.
Ab initio excited-state molecular dynamics calculations have been performed to study the effect of methyl substitution and chromophore distortion on the photoreaction of different four-double-bond retinal model chromophores. Randomly distributed starting geometries were generated by zero-point energy sampling; after Franck-Condon excitation the reaction was followed on the S1 surface. For determining the photoproduct and its configuration, a simplified approach--torsion angle following--is discussed and applied. We find that chromophore distortion significantly affects the outcome of the photoreaction: with dihedral angles taken from the rhodopsin-embedded 11-cis-retinal chromophore, the reaction rate of the model chromophore is increased by a factor of 3 compared to that of the relaxed chromophore. Also, the reaction proceeds in a completely stereoselective manner involving only the cis double bond and with a minimum quantum yield of 72%. Bond torsion is more effective than methyl substitution for fast and selective photochemistry, which is in agreement with photophysical measurements on rhodopsin analogues. We conclude that apart from the geometric distortions caused by the protein pocket it is not necessary to postulate other specific interactions between the protein and the chromophore to effect the selective and ultrafast photoreaction in rhodopsin.  相似文献   

14.
The photophysics of indigo as well as of bispyrroleindigo, the basic chromophore of indigo, has been investigated with ab initio electronic-structure calculations. Vertical electronic excitation energies and excited-state potential-energy profiles have been calculated with the CASSCF, CASPT2 and CC2 methods. The calculations reveal that indigo and bispyrroleindigo undergo intramolecular single-proton transfer between adjacent N-H and C=O groups in the (1)ππ* excited state. The nearly barrierless proton transfer provides the pathway for a very efficient deactivation of the (1)ππ* state via a conical intersection with the ground state. While a low-lying S(1)-S(0) conical intersection exists also after double-proton transfer, the latter reaction path exhibits a much higher barrier. The reaction path for trans→cis photoisomerization via the twisting of the central C=C bond has been investigated for bispyrroleindigo. It has been found that the twisting of the central C=C bond is unlikely to play a role in the photochemistry of indigo, because of a large potential-energy barrier and a rather high energy of the S(1)-S(0) conical intersection of the twisted structure. These findings indicate that the exceptional photostability of indigo is the result of rapid internal conversion via intramolecular single-proton transfer, combined with the absence of a low-barrier reaction path for the generation of the cis isomer via trans→cis photoisomerization.  相似文献   

15.
CASPT2//CASSCF/6-31G photochemical reaction path computations for two 4-cis-nona-2,4,6,8-tetraeniminium cation derivatives, with the 4-cis double bond embedded in a seven- and eight-member ring, are carried out to model the reactivity of the corresponding ring-locked retinal chromophores. The comparison of the excited state branches of the two reaction paths with that of the native chromophore, is used to unveil the factors responsible for the remarkably short (60 fs) excited state (S(1)) lifetime observed when an artificial rhodopsin containing an eight member ring-locked retinal is photoexcited. Indeed, it is shown that the strain imposed by the eight-member ring on the chromophore backbone leads to a dramatic change in the shape of the S(1) energy surface. Our models are also used to investigate the nature of the primary photoproducts observed in different artificial rhodopsins. It is seen that only the eight member ring-locked retinal model can access a shallow energy minimum on the ground state. This result implies that the primary, photorhodopsin-like, transient observed in artificial rhodopsins could correspond to a shallow excited state minimum. Similarly, the second, bathorhodopsin-like, transient species could be assigned to a ground state structure displaying a nearly all-trans conformation.  相似文献   

16.
Optical spectra of hypsorhodopsin were theoretically analyzed by assuming the unprotonated all-trans form of the Schiff base of the chromophore. The large bathochromic shift of the optical absorption of hypsorhodopsin from that of the retinylidene Schiff base in solution could be easily explained by twisting the double bond of the chromophore; it could not be explained by simple counter anion models. Using the same twisted chromophore conformation for hypsorhodopsin as that of bathorhodopsin obtained by the torsion model, we showed that the calculated absorption wavelength was in fairly good agreement with the experimental value. Our calculated oscillator strengths and rotational strengths were quite similar between hypsorhodopsin and bathorhodopsin. Those theoretical results will be useful when one examines the relation of the chromophore's conformation between hypsorhodopsin and bathorhodopsin experimentally.  相似文献   

17.
The pigment Isorhodopsin, an analogue of the visual pigment Rhodopsin, is investigated via quantum-mechanics/molecular-mechanics computations based on an ab initio multiconfigurational quantum chemical treatment. The limited <5 kcal mol(-1) error found for the spectral parameters allows for a nearly quantitative analysis of the excited-state structure and reactivity of its 9-cis-retinal chromophore. We demonstrate that, similar to Rhodopsin, Isorhodopsin features a shallow photoisomerization path. However, the structure of the reaction coordinate appears to be reversed. In fact, while the coordinate still corresponds to an asynchronous crankshaft motion, the dominant isomerization component involves a counterclockwise, rather than clockwise, twisting of the 9-cis bond. Similarly, the minor component involves a clockwise, rather than counterclockwise, twisting of the 11-trans bond. Ultimately, these results indicate that Rhodopsin and Isorhodopsin relax along a common excited-state potential energy valley starting from opposite ends. The fact that the central and lowest energy region of such valley runs along a segment of the intersection space between the ground and excited states of the protein explains why the pigments decay at distinctive conical intersection structures.  相似文献   

18.
In visual and archaeal rhodopsins, light energy is stored in the chromophore-protein interaction after retinal photoisomerization. This paper reports a novel method to monitor the steric constraint after retinal isomerization by use of enhanced C-D stretching vibrations. In the difference FTIR spectra between an archaeal light-sensor pharaonis phoborhodopsin (ppR) and the primary K intermediate at 77 K, no peaks were observed in the 2160-2330 cm-1 region for deuterated retinals at position 7, 8, 10, 11, 12, and 15, whereas a strong peak appeared at 2244 cm-1 for the K intermediate of ppR possessing a C14-D-labeled retinal. The 2244-cm-1 band is assigned as the C14-D stretching vibration, and enhanced absorption in the K state probably originates from the local steric constraint at the C14-D position (also possible electrostatic field effects) after the C13=C14 double bond rotation.  相似文献   

19.
By using a sub-5-fs visible laser pulse, we have made the first observation of the vibrational spectra of the transition state during trans-cis isomerization in the retinal chromophore of bacteriorhodopsin (bR(S68). No instant isomerization of the retinal occurs in spite of electron promotion from the bonding pi-orbital to the anti-bonding pi*-orbital. The difference between the in-plane and out-of-plane vibrational frequencies (about 1150-1250 and 900-1000 cm(-1), respectively) is reduced during the first time period. The vibrational spectra after this period became very broad and weak and are ascribed to a "silent state." The silent state lasts for 700-900 fs until the chromophore isomerizes to the cis-C13 = C14 conformation. The frequency of the C = C stretching mode was modulated by the torsion mode of the C13 = C14 double bond with a period of 200 fs. The modulation was clearly observed for four to five periods. Using the empirical equation for the relation between bond length and stretching frequency, we determined the transitional C = C bond length with about 0.01 angstroms accuracy during the torsion motion around the double bond with 1-fs time resolution.  相似文献   

20.
Attachment of retinal to opsin forms the chromophore N-retinylidene, which isomerizes during photoactivation of rhodopsins. To test whether isomerization is crucial, custom-tailored chromophores lacking the β-ionone ring and any isomerizable bonds were incorporated in?vivo into the opsin of a blind mutant of the eukaryote Chlamydomonas reinhardtii. The analogs restored phototaxis with the anticipated action spectra, ruling out the need for isomerization in photoactivation. To further elucidate photoactivation, responses to chromophores formed from naphthalene aldehydes were studied. The resulting action spectral shifts suggest that charge separation within the excited chromophore leads to electric field-induced polarization of nearby amino acid residues and altered hydrogen bonding. This redistribution of charge facilitates the reported multiple bond rotations and protein rearrangements of rhodopsin activation. These results provide insight into the activation of rhodopsins and related GPCRs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号