首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The flexibility of the side chain and effects of conformational changes in the backbone on hydration and proton transfer in the short-side-chain (SSC) perfluorosulfonic acid fuel cell membrane have been investigated through first principles based molecular modelling studies. Potential energy profiles determined at the B3LYP/6-31G(d,p) level in the two pendant side chain fragments: CF(3)CF(-O(CF(2))(2)SO(3)H)-(CF(2))(7)-CF(-O(CF(2))(2)SO(3)H)CF(3) indicate that the largest CF(2)-CF(2) rotational barrier along the backbone is nearly 28.9 kJ mol(-1) higher than the minimum energy staggered trans conformation. Furthermore, the calculations reveal that the stiffest portion of the side chain is near to its attachment site on the backbone, with CF-O and O-CF(2) barriers of 38.1 and 28.0 kJ mol(-1), respectively. The most flexible portion of the side chain is the carbon-sulfur bond, with a barrier of only 8.8 kJ mol(-1). Extensive searches for minimum energy structures (at the B3LYP/6-311G(d,p) level) of the same polymeric fragment with 4-7 explicit water molecules reveal that the perfluorocarbon backbone may adopt either an elongated geometry, with all carbons in a trans configuration, or a folded conformation as a result of the hydrogen bonding of the terminal sulfonic acids with the water. These electronic structure calculations show that the fragments displaying the latter 'kinked' backbone possessed stronger binding of the water to the sulfonic acid groups, and also undergo proton dissociation with fewer water molecules. The calculations point to the importance of the flexibility in both the backbone and side chains of PFSA membranes to effectively transport protons under low humidity conditions.  相似文献   

2.
The conformational energy map of the molecule NH2CH2CHO is constructed using both the long basis set and the short basis set of the GAUSSIAN 70 package. It is shown that the two maps are qualitatively the same but that there are quantitative differences between them. Analysis of these and other results suggests that the stability of the extended planar structure is due in the main to the minimization of torsional barriers about the two single bonds of the backbone of the protein chain.There is broad general agreement between the semi-empirical method and its results as used by Scheraga and his colleagues on the one hand and our results from the ab initio computations on the other. Both methods suggest that the details of the conformations of these small peptides, treated as isolated molecules, are determined by hydrogen bonds and torsional barriers.  相似文献   

3.
Residual dipolar couplings (RDCs) measured for internally rigid molecular fragments provide important information about the relative orientations of these fragments. Dependent on the symmetry of the alignment tensor and the symmetry of the molecular fragment, however, there generally exist more than one solution for the fragment orientation consistent with the measured RDCs. Analytical solutions are presented that describe the complete set of orientations of internally rigid fragments that are consistent with multiple dipolar couplings measured in a single alignment medium that is rhombic. For the first time, it is shown that, for a planar fragment such as the peptide plane, there generally exist 16 different solutions with their analytical expressions presented explicitly. The presence of these solutions is shown to be highly relevant for standard structure determination protocols using RDCs to refine molecular structures. In particular, when using standard protein structure refinement with RDCs that were measured in a single alignment medium as constraints, it is found that often more than one of the peptide plane solutions is physically viable; i.e., despite being consistent with measured RDCs, the local backbone structure can be incorrect. On the basis of experimental and simulated examples, it is rationalized why protein structures that are refined against RDCs measured in a single medium can have lower resolution (precision) than one would expect on the basis of the experimental accuracy of the RDCs. Conditions are discussed under which the correct solution can be identified.  相似文献   

4.
We consider the problem of canonical labeling for a class of maps, which include proteomics maps, which consist of a set of vertices or protein spots. If this problem is solved and followed, different laboratories studying proteomics maps will arrive at the same numbering of spots, which would facilitate comparisons of data from different sources. In addition, the proposed canonical numberings of protein spots would allow compiling a catalog of proteomics maps just as canonical labeling allows making catalogs graphs, or molecules, and other canonically labeled systems, which would make search for similar sets of maps very efficient. We approach the problem by modifying the algorithm of Jeffrey for graphical representation of DNA based on the chaos game. Graphical representation of DNA as a chaos game map has an important property in that this representation allows one to assign sequential labels to spots in a DNA map. We have modified the approach for sequential labeling of chaos game map representations to graphical representation of any tabular data, such as listing of (x, y) coordinates of protein spots of proteomics maps.  相似文献   

5.
Fragmentation of peptide polyanions by electron detachment dissociation (EDD) has been induced by electron irradiation of deprotonated polypeptides [M-nH](n-) with >10 eV electrons. EDD has been found to lead preferentially to a* and x fragment ions (C(alpha)-C backbone cleavage) arising from the dissociation of oxidized radical anions [M-nH]((n-1)-*. We demonstrate that C(alpha)-C cleavages, which are otherwise rarely observed in tandem mass spectrometry, can account for most of the backbone fragmentation, with even-electron x fragments dominating over radical a* ions. Ab initio calculations at the B3 LYP level of theory with the 6-311+G(2 p,2 d)//6-31+G(d,p) basis set suggested a unidirectional mechanism for EDD (cleavage always N-terminal to the radical site), with a*, x formation being favored over a, x* fragmentation by 74.2 kJ mol(-1). Thus, backbone C(alpha)-C bonds N-terminal to proline residues should be immune to EDD, in agreement with the observations. EDD may find application in mass spectrometry for such tasks as peptide sequencing and localization of labile post-translational modifications, for example, those introduced by sulfation and phosphorylation. EDD can now be performed not only in Fourier transform mass spectrometry, but also in far more widely used quadrupole (Paul) ion traps.  相似文献   

6.
In this paper, the novel application of time-of-flight secondary ion mass spectrometry (TOF-SIMS) for qualitative and semi-quantitative investigation of the surface chemistry of separation media based on beaded agarose is reported. Five different media were studied: DEAE Sepharose Fast Flow, Q Sepharose Fast Flow, SP Sepharose Fast Flow, Phenyl Sepharose Fast Flow at ligand densities between 7 and 33% (w/w) and the base matrix Sepharose 6 Fast Flow. The obtained TOF-SIMS spectra reveal significant chemical information regarding the ligands (DEAE, Q, SP and Phenyl) which are covalently attached to the agarose-based matrix Sepharose 6 Fast Flow. For the anion-exchange media (DEAE and Q Sepharose Fast Flow), the positive TOF-SIMS spectra yielded several strong characteristic fragment peaks from the amine ligands. Structural information was obtained, e.g. from the peak at m/z 173.20, originating from the ion structure [(C2H5)2NCH2CH2NH(C2H5)2l+, which shows that the ligand in DEAE Sepharose Fast Flow is composed of both tertiary and quaternary amines. The positive spectrum of Phenyl Sepharose Fast Flow contained major fragments both from the base matrix and the ligand. The cation-exchanger (SP Sepharose Fast Flow) gave rise to a positive spectrum resembling that of the base matrix (Sepharose 6 Fast Flow) but with a different intensity pattern of the matrix fragments. In addition, peaks with low intensity at m/z 109.94, 125.94 and 139.95 corresponding to Na2SO2+, Na2SO3+ and Na2SO3CH2+, respectively, were observed. The positive TOF-SIMS spectrum of Sepharose 6 Fast Flow contains a large number of fragments in the mass range up to m/z 200 identified as CxHyOz and CxHy structures. The results clearly show that positive TOF-SIMS spectra of different media based on Sepharose 6 Fast Flow are strongly influenced by the ligand coupled to the matrix. The negative TOF-SIMS spectra contained several ligand-specific, characteristic peaks for the cation-exchanger, having sulphonate as the ion-exchange group. Negative fragments such as S-, SO-, SO2-, SO3-, C2H3SO3-, C3H5SO3- and OC3H5SO3- were observed. Phenyl Sepharose Fast Flow, which has an uncharged group (Phenyl) coupled to the agarose matrix yielded one ligand-related peak corresponding to the C6H5O- fragment. DEAE and Q ligands could only be identified by the appearance of the fragments CN- and CNO- in the negative spectrum. However, a strong peak corresponding to the counter ion (Cl-) was observed. TOF-SIMS analysis can also be used for the investigation of residues from the coupling procedure that bonds the ligands to the matrix. One example is the observation of bromine peaks in the negative spectrum of Q Sepharose Fast Flow. Furthermore, it has also been shown that different ligand concentrations of Phenyl Sepharose Fast Flow can easily be detected by TOF-SIMS analysis. Information regarding the difference between the ligand density on the surface of the beads and in the bulk can also be obtained. However, spectra registered on the outermost surface and on the pore surface (crushed beads) of DEAE Sepharose Fast Flow clearly show that the agarose and the DEAE groups are homogeneously distributed in the beads.  相似文献   

7.
A physics-based method aimed at determining protein structures by using NOE-derived distances together with observed and computed 13C chemical shifts is proposed. The approach makes use of 13Calpha chemical shifts, computed at the density functional level of theory, to obtain torsional constraints for all backbone and side-chain torsional angles without making a priori use of the occupancy of any region of the Ramachandran map by the amino acid residues. The torsional constraints are not fixed but are changed dynamically in each step of the procedure, following an iterative self-consistent approach intended to identify a set of conformations for which the computed 13Calpha chemical shifts match the experimental ones. A test is carried out on a 76-amino acid, all-alpha-helical protein; namely, the Bacillus subtilis acyl carrier protein. It is shown that, starting from randomly generated conformations, the final protein models are more accurate than an existing NMR-derived structure model of this protein, in terms of both the agreement between predicted and observed 13Calpha chemical shifts and some stereochemical quality indicators, and of similar accuracy as one of the protein models solved at a high level of resolution. The results provide evidence that this methodology can be used not only for structure determination but also for additional protein structure refinement of NMR-derived models deposited in the Protein Data Bank.  相似文献   

8.
NMR--chemical shift structure correlations were investigated by using GIAO-RB3LYP/6-311++G(2d,2p) formalism. Geometries and chemical shifts (CSI values) of 103 different conformers of N'-formyl-L-histidinamide were determined including both neutral and charged protonation forms. Correlations between amino acid torsional angle values and chemical shifts were investigated for the first time for an aromatic and polar amino acid residue whose side chain may carry different charges. Linear correlation coefficients of a significant level were determined between chemical shifts and dihedral angles for CSI[(1)H(alpha)]/phi, CSI[(13)C(alpha)]/phi, and CSI[(13)C(alpha)]/psi. Protonation of the imidazole ring induces the upfield shift of CSI[(13)C(alpha)] for positively charged histidines and an opposite effect for the negative residue. We investigated the correspondence of theoretical and experimental (13)C(alpha), (13)C(beta), and (1)H(alpha) chemical shifts and the nine basic conformational building units characteristic for proteins. These three chemical shift values allow the identification of conformational building units at 80% accuracy. These results enable the prediction of additional regular secondary structural elements (e.g., polyProlineII, inverse gamma-turns) and loops beyond the assignment of chemical shifts to alpha-helices and beta-pleated sheets. Moreover, the location of the His residue can be further specified in a beta-sheet. It is possible to determine whether the appropriate residue is located at the middle or in a first/last beta-strand within a beta-sheet based on calculated CSI values. Thus, the attractive idea of establishing local residue specific backbone folding parameters in peptides and proteins by employing chemical shift information (e.g., (1)H(alpha) and (13)C(alpha)) obtained from selected heteronuclear correlation NMR experiments (e.g., 2D-HSQC) is reinforced.  相似文献   

9.
There has recently been much interest in exploiting the unusual properties associated with fluorocarbons to modulate the physicochemical properties of proteins. Here we present a detailed investigation into the effect on structure and stability of systematically repacking the hydrophobic core of a model protein with the extensively fluorinated (fluorous) amino acid l-5,5,5,5',5',5'-hexafluoroleucine (hFLeu). The starting point was a 27-residue peptide, alpha(4)-H, that adopts an antiparallel 4-alpha-helix bundle structure, and in which the hydrophobic core comprises six layers of leucine residues introduced at the "a" and "d" positions of the canonical heptad repeat. A series of peptides were synthesized in which the central two (alpha(4)-F(2))(,) four (alpha(4)-F(4)), or all six layers (alpha(4)-F(6)) of the core were substituted hFLeu. The free energy of unfolding increases by 0.3 (kcal/mol)/hFLeu on repacking the central two layers and by an additional 0.12 (kcal/mol)/hFLeu on repacking additional layers, so that alpha(4)-F(6) is approximately 25% more stable than the nonfluorinated protein alpha(4)-H. One-dimensional proton, two-dimensional (1)H-(15)N HSQC, and (19)F NMR spectroscopies were used to examine the effect of fluorination on the conformational dynamics of the peptide. Unexpectedly, increasing the degree of fluorination also appears to result in peptides that possess a more structured backbone and less fluid hydrophobic core. The latter only occurs in alpha(4)-F(4) and alpha(4)-F(6), suggesting that crowding of the hFLeu residues may restrict the amplitude and/or time scales for rotation of the side chains.  相似文献   

10.
Velocity-map imaging studies are reported for the photodissociation of acetaldehyde over a range of photolysis wavelengths (317.5-282.5 nm). Images are obtained for both the HCO and CH3 fragments. The mean rotational energy of both fragments increases with photodissociation energy, with a lesser degree of excitation in the CH3 fragment. The CH3 images demonstrate that the CH3 fragments are rotationally aligned with respect to the recoil direction and this is interpreted, and well modeled, on the basis of a propensity for forming CH3 fragments with M approximately K, where M is the projection of the rotational angular momentum along the recoil direction. The origin of the CH3 rotation is conserved motion from the torsional and methyl-rocking modes of the parent molecule. Nonstatistical vibrational distributions for the CH3 fragment are obtained at higher energies.  相似文献   

11.
A naturally occurring beta-hairpin peptide (PDB ID 1UAO) was used as a model to study the backbone oxidation of a protein with ab initio calculation at the B3LYB/6-31G(d) without any constraints. The (alpha)C--H bond dissociation energy of three different glycyl radicals located at different sites on the beta-hairpin peptide was calculated to evaluate the site specificity of backbone oxidation. The molecular and electronic structures of these glycyl radicals were analyzed to rationalize this site specificity. The overall molecular structure of the alpha-H abstracted beta-hairpin peptide remained almost unchanged with the exception of the local conformation of the attacked residue. However, the (alpha)C--H bond strength varied dramatically among these different sites.  相似文献   

12.
Presented here is a first principles based molecular modeling investigation of the possible role of the side chain in effecting proton transfer in the short-side-chain perfluorosulfonic acid fuel cell membrane under minimal hydration conditions. Extensive searches for the global minimum energy structures of fragments of the polymer having two pendant side chains of distinct separation (with chemical formula: CF(3)CF(O(CF(2))(2)SO(3)H)(CF(2))(n)CF(O(CF(2))(2)SO(3)H)CF(3), where n = 5, 7, and 9) with and without explicit water molecules have shown that the side chain separation influences both the extent and nature of the hydrogen bonding between the terminal sulfonic acid groups and the number of water molecules required to transfer the proton to the water molecules of the first hydration shell. Specifically, we have found that fully optimized structures at the B3LYP/6-311G** level revealed that the number of water molecules needed to connect the sulfonic acid groups scaled as a function of the number of fluoromethylene groups in the backbone, with one, two, and three water molecules required to connect the sulfonic acid groups in fragments with n = 5, 7, and 9, respectively. With the addition of explicit water molecules to each of the polymeric fragments, we found that the minimum number of water molecules required to effect proton transfer also increases as the number of separating tetrafluoroethylene units in the backbone is increased. Furthermore, calculation of water binding energies on CP-corrected potential energy surfaces showed that the water molecules bound more strongly after proton dissociation had occurred from the terminal sulfonic acid groups independent of the degree of separation of the side chains. Our calculations provide a baseline for molecular results that can be used to assess the impact of changes of polymer chemistry on proton conduction, including the side chain length and acidic functional group.  相似文献   

13.
For the detection of the precise and unambiguous binding of fragments to a specific binding site on the target protein, we have developed a novel reporter displacement binding assay technology. The application of this technology for the fragment screening as well as the fragment evolution process with a specific modelling based design strategy is demonstrated for inhibitors of the protein kinase p38alpha. In a fragment screening approach seed fragments were identified which were then used to build compounds from the deep-pocket towards the hinge binding area of the protein kinase p38alpha based on a modelling approach. BIRB796 was used as a blueprint for the alignment of the fragments. The fragment evolution of these deep-pocket binding fragments towards the fully optimized inhibitor BIRB796 included the modulation of the residence time as well as the affinity. The goal of our study was to evaluate the robustness and efficiency of our novel fragment screening technology at high fragment concentrations, compare the screening data with biochemical activity data and to demonstrate the evolution of the hit fragments with fast kinetics, into slow kinetic inhibitors in an in silico approach.  相似文献   

14.
Small-molecule stabilization of protein-protein interactions (PPIs) is a promising strategy in chemical biology and drug discovery. However, the systematic discovery of PPI stabilizers remains a largely unmet challenge. Herein we report a fragment-linking approach targeting the interface of 14-3-3 and a peptide derived from the estrogen receptor alpha (ERα) protein. Two classes of fragments—a covalent and a noncovalent fragment—were co-crystallized and subsequently linked, resulting in a noncovalent hybrid molecule in which the original fragment interactions were largely conserved. Supported by 20 crystal structures, this initial hybrid molecule was further optimized, resulting in selective, 25-fold stabilization of the 14-3-3/ERα interaction. The high-resolution structures of both the single fragments, their co-crystal structures and those of the linked fragments document a feasible strategy to develop orthosteric PPI stabilizers by linking to an initial tethered fragment.  相似文献   

15.
Parametrization and testing of a new all-atom force field for organic molecules and peptides with fixed bond lengths and bond angles are described. The van der Waals parameters for both the organic molecules and the peptides were taken from J. Phys. Chem. B 2003, 107, 7143 and J. Phys. Chem. B 2004, 108, 12181. First, the values of the 1-4 nonbonded and electrostatic scale factors appropriate to the new force field were determined by computing the conformational energies of six model molecules, namely, ethanol, ethylamine, propanol, propylamine, 1,2-ethanediol, and 1,3-propanediol with different values of these factors. The partial atomic charges of these molecules were obtained by fitting to the electrostatic potentials calculated with the HF/6-31G quantum-mechanical method. Two different charge models (single- and multiple-conformation-derived) were also considered. We demonstrated that the charge model has a stronger effect on the conformational energies than the 1-4 scaling. The choice of a charge model affected the conformational energies of even the smallest molecules considered, whereas the effect of the 1-4 electrostatic or nonbonded scaling was apparent only for 1,3-propanediol. The best agreement with high-level ab initio data was obtained with the multiple-conformation-derived charges and with no scaling of the 1-4 nonbonded or electrostatic interactions (scale factors of 1.0). Next, the torsional parameters of a large number of neutral and charged organic molecules, assumed to be models of the side chains of the 20 naturally occurring amino acids, were computed by fitting to rotational energy profiles obtained from ab initio MP2/6-31G calculations. The quality of the fits was high with average errors for torsional profiles of less than 0.2 kcal/mol. To derive the torsional parameters for the peptide backbone, the partial atomic charges of the 20 neutral and charged amino acids were obtained by fitting to the electrostatic potentials of terminally blocked amino acids using the HF/6-31G quantum-mechanical method. Then, the phi-psi energy maps of Ac-Ala-NMe and Ac-Gly-NMe were computed using MP2/6-31G//HF/6-31G quantum-mechanical methods. The phi-psi energy map of Ac-Ala-NMe was used for refinement of the nonbonded parameters for the backbone nitrogen and hydrogen bonded to it. Subsequently, the main-chain torsional parameters were obtained by fitting the molecular mechanics energies to the phi-psi energy maps of Ac-Ala-NMe and Ac-Gly-NMe. The transferability of the entire force field was demonstrated by reproducing the main energy minima of terminally blocked Ala3 from the literature. The performance of the force field was also evaluated by simulating crystal structures of small peptides. By comparison of simulated and experimental data, examination of the torsional-angle and atom-positional root-mean-square deviations of the energy-minimized crystal structures from the corresponding X-ray model structures demonstrated high accuracy of the force field.  相似文献   

16.
An automatic procedure is proposed for reconstruction of a protein backbone from its C(alpha)-trace; it is based on optimization of a simplified energy function of a peptide backbone, given its alpha-carbon trace. The energy is expressed as a sum of the energies of interaction between backbone peptide groups that are not neighbors in the sequence, the energies of local interactions within all amino acid residues, and a harmonic penalty function accounting for the conservation of standard bond angles. The energy of peptide group interactions is calculated using the assumption that each peptide group acts as a point dipole. For local interaction energy, use is made of a two-dimensional Fourier series expansion of the energies of model terminally blocked amino acid residues, calculated with the Empirical Conformational Energy Program for Peptides (ECEPP/3) force field in the angles lambda((1)) and lambda((2)) defining the rotation of peptide groups adjacent to a C(alpha) carbon atom about the corresponding C(alpha) em leader C(alpha) virtual-bond axes. To explore all possible rotations of peptide groups within a fixed C(alpha)-trace, a Monte Carlo search is carried out. The initial lambda angles are calculated by aligning the dipoles of the peptide groups that are close in space, subject to the condition of favorable local interactions. After the Monte Carlo search is accomplished with the simplified energy function, the energy of the structure is minimized with the ECEPP/3 force field, with imposition of distance constraints corresponding to the initial C(alpha)-trace geometry. The procedure was tested on model alpha-helices and beta-sheets, as well as on the crystal structure of the immunoglobulin binding protein (PDB code: 1IGD, an alpha/beta protein). In all cases, complete backbone geometry was reconstructed with a root-mean-square (rms) deviation of 0.5 A from the all-atom target structure.  相似文献   

17.
De novo site-specific backbone and side-chain resonance assignments are presented for U-15N(1-73)/U-13C,15N(74-108) reassembly of Escherichia coli thioredoxin by fragment complementation, determined using solid-state magic angle spinning NMR spectroscopy at 17.6 T. Backbone dihedral angles and secondary structure predicted from the statistical analysis of 13C and 15N chemical shifts are in general agreement with solution values for the intact full-length thioredoxin, confirming that the secondary structure is retained in the reassembled complex prepared as a poly(ethylene glycol) precipitate. The differential labeling of complementary thioredoxin fragments introduced in this work is expected to be beneficial for high-resolution structural studies of protein interfaces formed by protein assemblies by solid-state NMR spectroscopy.  相似文献   

18.
Changes of electrostatic potential (EP) around the DNA molecule resulting from chemical modifications of nucleotides may play a role in enzymatic recognition of damaged sites. Effects of chemical modifications of nucleotides on the structure of DNA have been characterized through large-scale density functional theory computations. Quantum mechanical structural optimizations of DNA fragments with three pairs of nucleotides and accompanying counteractions were performed with a B3LYP exchange-correlation functional and 6–31G** basis sets. The “intact” DNA fragment contained guanine in the middle layer, while the “damaged” fragment had the guanine replaced with 8-oxo-guanine. The electrostatic potential around these DNA fragments was projected on a surface around the double helix. The 2D maps of EP of intact and damaged DNA fragments were analyzed to identify these modifications of EP that result from the occurrence of 8-oxo-guanine. It was found that distortions of the phosphate groups and displacements of the accompanying countercations are clearly reflected in the EP maps. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

19.
Direct Analysis of Daughter Ions” (DADI) can be carried out with commercial mass spectrometers embodying the Nier-Johnson inverse geometry. DADI measurements permit experimental detection of the consecutive formation of molecule fragments (fragment genesis). Knowledge of fragment genesis enables the chemist to clarify the fragmentation processes of molecule-ions and provides information on the structure of fragments formed in the mass spectrometer. In combination with classical mass spectrometry such information makes it easier to determine the structure of compounds, to analyze mixtures, to determine the sequence in periodically constructed molecules, for example oligopeptides, and to study rearrangement reactions occurring in the mass spectrometer.  相似文献   

20.
This article discusses the features of a newly developed matrix-assisted laser desorption/ionization quadrupole/time-of-flight (MALDI-QqTOF) mass spectrometer that is useful in the analysis of phosphorylated peptides. Aliquots of beta-casein, a commonly used phosphorylated protein standard, were digested with trypsin directly on a non-porous polyurethane membrane used as sample support in MALDI-QqTOF mass spectrometry (MS) experiments. Although a complete peptide map was obtained, it was difficult to obtain sequence information for some of the tryptic fragments, in particular T1-2, which bears four phosphate groups and is thus difficult to ionize in positive mode. This article focuses on the sequencing of this particular fragment by comparing MS/MS spectra obtained using different precursor ions. These precursors associated with T1-2 were [M + H](+), [M + H](2+), and [M + H - nH(3)PO(4)](+) ions. Typically, phosphorylated ions showed facile unimolecular losses of phosphoric acid moieties, and produced limited backbone fragmentation. The abundance of [M + H](2+) ions of T1-2 in the full mass spectrum was low relative to that of [M + H](+). [M + H - 4H(3)PO(4)](+) ions as MS/MS precursors underwent backbone fragmentations, with phosphoserine residues transformed into dehydroalanines or serines. Unusual b + 18 u fragments were observed, although only for segments with previously phosphorylated serines. These partly interfered with c-ions, and were noticeable due to overlapping isotopic envelopes. It was possible to establish the sequence of phosphorylated tryptic fragment T1-2 and the location of phosphate groups using the mass of dehydroalanine residues (69 Da) and b + 18 u fragments as markers. All MS and MS/MS spectra obtained with fully phosphorylated beta-casein were compared with spectra acquired with dephosphorylated beta-casein obtained commercially. These comparisons helped assess the spectral differences caused by the presence of phosphate groups. Also, they highlighted the potential usefulness of conducting dephosphorylation directly on the probe prior to MALDI analysis in future studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号