首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The composition and microstructure of syndiotactic para-methylstyrene/styrene copolymer was determined by a pyrolysis gas chromatography (Py-GC) method. This method uses the styrene and para-methylstyrene monomer peak intensities to determine the styrene and para-methylstyrene composition in the copolymer. The number average sequence length of styrene was calculated by using the triad peak intensities. Because of the low concentration of para-methylstyrene in the copolymer, the number average sequence length of para-methylstyrene was determined with formulas that incorporate the copolymer composition and the number average sequence length of styrene. The distribution of para-methylstyrene defined by the terms “percent of single units” and “percent of desired distribution” was calculated by the number average sequence of para-methylstyrene. This method has been tested with copolymers containing up to 24 mole% of para-methylstyrene. The composition results from Py-GC of para-methylstyrene and styrene copolymers used in this study were in excellent agreement with 1H-NMR results.  相似文献   

2.
A pseudo‐comprehensive two‐dimensional liquid chromatography approach with size exclusion chromatography in the first dimension and gradient reversed‐phase liquid chromatography in the second dimension was successfully developed for the characterization of vinyl acetate/acrylic acid copolymers and vinyl acetate/itaconic acid/acrylic acid terpolymers. Active solvent modulation was exploited to prevent the polymer breakthrough in the second dimension separation caused by the strong solvent used in the first dimension. The conditions of the active solvent modulation valve were optimized to achieve sufficient on‐line dilution and to completely prevent polymer breakthrough without adding excessive time to the modulation cycle. Using this approach, copolymers made with different monomer ratios and processes were studied. Heterogeneous composition distribution due to insufficient monomer incorporation was detected in some of the copolymer samples. We demonstrated that with active solvent modulation, the two‐dimensional liquid chromatography approach is no longer limited to water‐soluble polymers and can be used for a broader range of polymers and copolymers.  相似文献   

3.
Gradient elution of synthetic polymers has been studied both theoretically and experimentally using normal and reversed-phase HPLC systems. An accurate equation describing the gradient elution of polymer-homologous series in the context of continuous random-flight model of a flexible polymer chain interacting with attractive surface of the porous material has been derived and experimentally verified against a series of narrow polystyrene standards. Both the theory and the experiment predict the existence of molar mass-independent gradient elution at critical point of adsorption (CPA). The extension of the theory to synthetic copolymers predicts the existence of the CPA for statistical copolymers and describes its dependence on chemical composition and microstructure (blockiness) of the polymer chains. One of the important theoretical conclusions is that blockiness always increases the retention, so that blockier polymer chains elute later than their more random counterparts with the same chemical composition. This prediction has been confirmed experimentally using block and statistical styrene-methylmethacrylate copolymers. Block copolymers do not have CPA and always elute between critical points of the corresponding homopolymers. The retention depends on the polymer molar mass and increases with the length of the blocks from a stronger absorbing monomer. These findings provide theoretical and experimental bases for separation of statistical and block copolymers by chemical composition and microstructure of polymer chains.  相似文献   

4.
We report the monomer reactivity ratios for copolymers of methyl methacrylate (MMA) and a reactive monomer, 2‐vinyl‐4,4′‐dimethylazlactone (VDMA), using the Fineman–Ross, inverted Fineman–Ross, Kelen–Tudos, extended Kelen–Tudos, and Tidwell–Mortimer methods at low and high polymer conversions. Copolymers were obtained by radical polymerization initiated by 2,2′‐azobisisobutyronitrile in methyl ethyl ketone solutions and were analyzed by NMR, gas chromatography (GC), and gel permeation chromatography. 1H NMR analysis was used to determine the molar fractions of MMA and VDMA in the copolymers at both low and high conversions. GC analysis determined the molar fractions of the monomers at conversions of less than 27% and greater than 65% for the low‐ and high‐conversion copolymers, respectively. The reactivity ratios indicated a tendency toward random copolymerization, with a higher rate of consumption of VDMA at high conversions. For both low‐ and high‐conversion copolymers, the molecular weights increased with increasing molar fractions of VDMA, and this was consistent with the faster consumption of VDMA (compared with that of MMA). © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3027–3037, 2003  相似文献   

5.
Two analytical procedures based on gas chromatography and mass spectrometry were used to study the compositions of a wild population and a selected clone (Torviscosa) of giant reed (Arundo donax L.), one of the most promising biomass both in terms of energy and fine chemicals production. Gas chromatography/mass spectrometry (GC/MS) was used to characterize and quantitatively determine the monosaccharide composition. Pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS), using hexamethyldisilazane (HMDS) as a derivatising agent, was used to characterize the lignocellulosic polymers. Analytical pyrolysis was also used to study the composition of residues left after the catalytic hydrolysis used to convert cellulose to levulinic acid and hemicellulose to furfural.GC/MS allowed us to determine the monosaccharide composition and polysaccharide content of the giant reed samples, highlighting that there was no significant difference between the wild population and the selected clone. GC/MS also highlighted that the giant reed leaves have a higher percentage (roughly 60%) of polysaccharide material than the stalks, which contain approximately 50%.Py-GC/MS, following the disappearance of the pyrolysis products of polysaccharides, showed that 150 °C and 190 °C are the best temperatures to obtain the complete catalytic conversion of hemicellulose and cellulose, respectively. Analytical pyrolysis also highlighted that in the course of catalytic hydrothermal conversion a partial depolymerisation of lignin was obtained. In particular, the formation of lignin units containing free phenol groups via the cleavage of the β-aryl ether bonds was demonstrated. The presence of these free phenols in the lignin network suggests the possible exploitation of lignin residues as antioxidant components or in high value biopolymer industries rather than the traditional use as low-value fuel for energy production.  相似文献   

6.
The chemical composition of a poly(benzoxazine) thermoset polymer (a copolymer of bisphenol-A benzoxazine and tert.-butylphenol benzoxazine) has been studied by pyrolysis-gas chromatography (Py-GC). Major pyrolysates have been identified and the possible degradation pathways have been investigated. A specific pyrolysate was identified for quantitative analysis after carefully proving the linear relationship between the pyrolysate signal intensity and monomer concentration over a wide range of compositions. A method to determine the concentration of the monomer that potentially acts as a cross-linking unit has been developed. In this study, Py-GC was shown to be an excellent analytical technique for the qualitative and quantitative analysis of thermoset polymers.  相似文献   

7.
8.
Mass Spectrometry, being able to look at the mass of individual molecules in a mixture of homologues, is particularly suitable for the detection of a series of oligomers. However, mass spectra had not been exploited to estimate oligomers distributions, due to the diffuse notion that a lack of correlation existed between peak intensities and concentration of the oligomers in the mixture. The introduction of soft-ionization techniques has largely eliminated this problem. A novel method for the determination of the microstructure of copolymers is presented here. We have recently found that opportune decoding of the information contained in the mass spectral intensities leads to the determination of composition and microstructure in copolymers, and this represents a significant progress. Statistical modeling of the mass spectral intensities of copolymers has been used to derive information on the distribution of monomers along the copolymer chain, and an automated procedure to find the composition and the sequence of the copolymers analyzed has been developed. The statistical analysis of copolymers makes use of Bernoullian and Markovian models in order to characterize the microstructure of copolymer samples, and assuming a theoretical distribution and then fitting the calculated oligomer abundances with the experimental MS peak intensities, the copolymer composition can be determined. A method is also reported to obtain the copolymer conposition by direct analysis of the mass spectra. These theories have been applied to determine the composition and the microstructure of several copolymers whose mass spectra have been reported in the most recent literature.  相似文献   

9.
In order to determine the influence of composition drift and copolymer microstructure on the mechanical bulk properties of styrene -methyl acrylate copolymers, several copolymers were produced by emulsion copolymerization. Three different average compositions were used. By performing the copolymerizations under batch and semicontinuous conditions with two different monomer addition strategies (starved conditions and optimal addition) it was possible to control composition drift and to produce copolymers with different microstructures (chemical composition distributions). All these copolymers were processed in a way that ensured that the original particle structure was lost before the polymers were tested. It was found that composition drift had an influence on the mechanical properties (Young's modulus, maximum stress, elongation at break). This influence could be understood very well on the basis of present knowledge about structure-mechanical properties relationships. In the case of homogeneous copolymers maximum stress and elongation at break are dependent on the molecular weight, and only weakly dependent on the chemical composition, and Young's modulus is independent of chemical composition and molecular weight in the range of compositions investigated, as expected. In the case of heterogeneous copolymers, the influence of copolymer microstructure on Young's modulus, maximum stress and elongation at break is very large. Depending on the extent of control of composition drift during the polymerizations, phase separation was observed in the processed polymers, and the presence of a rubber phase affected the properties profoundly.  相似文献   

10.
Amphiphilic block and statistical copolymers of vinyl ethers (VEs) with pendant glucose residues were synthesized by the living cationic polymerization of isobutyl VE (IBVE) and a VE carrying 1,2:5,6‐di‐O‐isopropylidene‐D ‐glucose (IpGlcVE), followed by deprotection. The block copolymer was prepared by a two‐stage sequential block copolymerization, whereas the statistical copolymer was obtained by the copolymerization of a mixture of the two monomers. The monomer reactivity ratios estimated with the statistical copolymerization were r1 (IBVE) = 1.65 and r2 (IpGlcVE) = 1.15. The obtained statistical copolymers were nearly uniform with the comonomer composition along the main chain. Both the block and statistical copolymers had narrow molecular weight distributions (weight‐average molecular weight/number‐average molecular weight ∼ 1.1). Gel permeation chromatography, static light scattering, and spin–lattice relaxation time measurements in a selective solvent revealed that the block copolymer formed multimolecular micelles, possibly with a hydrophobic poly(IBVE) core and a glucose‐carrying poly(VE) shell, whereas the statistical copolymer with nearly the same molecular weight and segment composition was molecularly dispersed in solution. The surface properties of the solvent‐cast films of the block and statistical copolymer were also investigated with the contact‐angle measurement. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 459–467, 2001  相似文献   

11.
Abstract

The microstructure of isobutylene-para-methylstyrene (IB-pMeSt) copolymers was studied by NMR spectroscopy. 1H- and 13C-NMR spectra were used to obtain overall copolymer compositions. 13C-NMR signals were assigned in terms of triad monomer sequences, and triad distributions were obtained over a wide copolymer composition range. According to statistical tests, the IB-pMeSt copolymerization cannot be described by zero- (Bernoullian) or first-order Markov models because reactivity ratios r IB and r pMeSt were found to change with the monomer feed composition. Additional insight into the microstructure of IB-pMeSt copolymers was gained by calculating sequence numbers, run numbers, and sequence lengths from triad distributions. Further, the Kelen-Tüdös plot showed a distinct curvature indicating that the Kelen-Tüdös method, applied over the entire monomer feed composition range, cannot give meaningful reactivity ratios for this monomer pair. Evidently the simple two-parameter Mayo-Lewis model is inadequate to describe the IB-pMeSt copolymerization system.  相似文献   

12.
The monomer addition policies required to produce homogeneous methyl methacrylateethyl acrylate copolymers of different compositions were determined by means of a semiempirical approach. This approach is useful for systems about which only a limited information is available. Applying this method only three reactions were needed to obtain homogeneous copolymers in a minimum process time. Comparisons were made between the results obtained using this monomer addition strategy and those from copolymerizations carried out under the classical starved conditions.  相似文献   

13.
Polymer additive analysis by pyrolysis-gas chromatography. I. Plasticizers   总被引:1,自引:0,他引:1  
Plasticizers are widely used in thermoplastic polymers to modify their physical properties and processibility. Plasticizers as well as most of the other additives in the polymer can be qualitatively analyzed by pyrolysis-gas chromatography (Py-GC) simultaneously with the polymer composition. The key to the successful analysis of plasticizers not only requires a comprehensive understanding of commercial plasticizers but also requires knowledge of the polymer and its applications, as well as the Py-GC technique. In this study, several plasticizers in different polymeric systems were studied to demonstrate the utility of Py-GC as a good tool for the characterization of these systems. The advantages of using Py-GC for plasticizer analysis are also discussed.  相似文献   

14.
同时裂解甲基化气相色谱法鉴别合成胶粘剂   总被引:3,自引:0,他引:3  
李柏林  丁军凯  闫福宁  范垂昌 《色谱》2000,18(4):364-366
 应用同时裂解甲基化气相色谱法 (Py Me GC)对合成胶粘剂进行了鉴别。采用热丝型裂解器、氢火焰离子化气相色谱仪、FFAP毛细管柱、程序升温方式及季铵盐甲基化试剂 ,对刑事案件中常见的丙烯酸酯类及其改性体、醋酸乙烯酯、聚乙烯醇等合成胶粘剂进行了测定 ,并对样品裂解各主要组分峰进行了GC/MS定性分析 ,同时比较了相同样本用常规裂解气相色谱法 (Py GC)测定的结果。结果表明 :Py Me GC法比Py GC法可获得更多的物质组分信息 ,是一种适用于法庭科学鉴定的方法。  相似文献   

15.
Crystallization analysis fractionation (Crystaf) is a new technique used to estimate the chemical composition distribution (CCD) of semi-crystalline copolymers. In this study, the effect of chain microstructure and operation parameters on Crystaf profiles was investigated using a series of ethylene/1-hexene copolymers and their blends. The Crystaf profiles were also modeled via stochastic simulation based on the distribution of average ethylene sequence lengths.  相似文献   

16.
The systematical kinetic investigations of four 2‐substituted‐2‐oxazoline monomers with four initiators at two temperatures and four monomer/initiator ratios are described. To cover this broad range of variables (128 different combinations), an automated synthesizer was used to accelerate the investigations and to provide highly comparable results. With both gas chromatography and gel permeation chromatography, the livingness and the polymerization rates were determined for the different polymerizations. The resulting insights in the kinetics were used for the directed synthesis of truly random copolymers and copolymers with composition drift. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1830–1840, 2004  相似文献   

17.
NMR spectroscopy was applied for quantitative and qualitative characterization of the chemical composition and microstructure of a series of poly(3‐hydroxybutyrate‐co‐3‐hydoxyvalerate) copolymers, P(3HB‐co‐3HV), synthesized by mixed microbial cultures at several different feeding strategies. The monomer sequence distribution of the bacterially synthesized P(3HB‐co‐3HV) was defined by analysis of their high‐resolution 1D 13C NMR and 2D 1H/13C HSQC and 1H/13C HMBC NMR spectra. The results were verified by employment of statistical methods and suggest a block copolymer microstructure of the P(3HB‐co‐3HV) copolymers studied. Definitive distinction between block copolymers or a mixture of random copolymers could not be achieved. NMR spectral analysis indicates that the chemical composition and microstructure of the copolymers can be tuned by choosing a correct feeding strategy. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
The chain microstructure of copolymers generated via anionic copolymerization with constant monomer ratio is studied theoretically by using the linear operator technique to solve the kinetic differential equations. The microstructural parameters for copolymers, such as the functions of sequence distributions, average length of the sequence and fractions of dyads and triads, are derived and further connected with initial conditions and reaction time so that one can predict the chain microstructure for copolymers from the polymerization conditions.  相似文献   

19.
Summary: Copolymers of ethylene with methyl methacrylate (EMMA) and butyl acrylate (EBA), which are of different average chemical composition and block lengths according to NMR analysis, were analyzed by size exclusion chromatography (SEC), differential scanning calorimetry (DSC), Crystallization Analysis Fractionation (CRYSTAF), and high performance liquid chromatography at high temperature (HT-HPLC). With CRYSTAF and DSC crystallizing fractions were detected only in some samples. HT-HPLC fractionated all the samples irrespective of their crystallinity. Homopolymers, PMMA and PE were also found in the copolymer samples of EMMA. EMMA and EBA were separated in HPLC according to the content of polar comonomer. A linear correlation between the MMA content and elution volume could not be established due to the presence of homopolymers as admixtures. In such a case the average chemical composition obtained by NMR does not correspond to the real chemical composition of the copolymers. Unlike EMMA the EBA samples eluted in single peaks, which was used for evaluation of their chemical composition distribution. The comparison of results obtained by fractionation via CRYSTAF and HT-HPLC clearly demonstrates the advantages of the chromatographic approach to study the chemical heterogeneity of olefin based copolymers.  相似文献   

20.
A novel method for the determination of the microstructure of copolymers is presented here. Statistical modeling of the mass spectral intensities of copolymers has been used to derive information on the distribution of monomers along the copolymer chain, and an automated procedure to find the composition and the sequence of the copolymers analyzed has been developed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号