首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An enzyme-based gas sensor (bio-sniffer) for choline vapour was fabricated and tested. The bio-sniffer was constructed using a Clark-type dissolved oxygen electrode and an enzyme (choline oxidase) immobilized membrane. This bioelectronic device measures choline concentration by the oxygen consumption induced by an enzyme reaction of choline oxidase. As the assessment of sensor performances, the calibration curves for choline in the liquid and gas phases were investigated, respectively. The responses of the bioelectronic device to choline solutions of various concentrations were related within a range from 5.00 to 700 μmol·L−1 with a correlation coefficient of 0.999. On the other hand, the bio-sniffer for choline vapour was placed into a gas-measuring chamber and calibrated using gas detection tubes. The calibration range was 1.00–30.0 ppm (correlation coefficient: 0.996). The response time for choline vapour was approximately 15% slower than that of biosensor for choline solution. These results indicate that the bio-sniffer is useful to monitor colourless and odourless choline gas released from coating compositions including choline. Correspondence: Kohji Mitsubayashi, Department of Biomedical Devices and Instrumentation, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan  相似文献   

2.
3.
On the basis of the isoelectric point of an enzyme and the doping principle of conducting polymers, choline oxidase was doped in a polyaniline film to form a biosensor. The amperometric detection of choline is based on the oxidation of the H2O2 enzymatically produced on the choline biosensor. The response current of the biosensor as a function of temperature was determined from 3 to 40°C. An apparent activation energy of 22.8 kJ·mol−1 was obtained. The biosensor had a wide linear response range from 5 × 10−7 to 1 × 10−4 M choline with a correlation coefficient of 0.9999 and a detection limit of 0.2 μM, and had a high sensitivity of 61.9 mA·M−1·cm−2 at 0.50 V and at pH 8.0. The apparent Michaelis constant and the optimum pH for the immobilized enzyme are 1.4 mM choline and 8.4, respectively, which are very close to those of choline oxidase in solution. The effect of selected organic compounds on the response of the choline biosensor was studied.  相似文献   

4.
Shi H  Yang Y  Huang J  Zhao Z  Xu X  Anzai J  Osa T  Chen Q 《Talanta》2006,70(4):852-858
An amperometric choline biosensor was developed by immobilizing choline oxidase (ChOx) in a layer-by-layer (LBL) multilayer film on a platinum (Pt) electrode modified with Prussian blue (PB). 6-O-Ethoxytrimethylammoniochitosan chloride (EACC) was used to prepare the ChOx LBL films. The choline biosensor was used at 0.0 V versus Ag/AgCl to detect choline and exhibited good characteristics such as relative low detection limit (5 × 10−7 M), short response time (within 10 s), high sensitivity (88.6 μA mM−1 cm−2) and a good selectivity. The results were explained based on the ultrathin nature of the LBL films and the low operating potential that could be due to the efficient catalytic reduction of H2O2 by PB. In addition, the effects of pH, temperature and applied potential on the amperometric response of choline biosensor were evaluated. The apparent Michaelis-Menten constant was found to be (0.083 ± 0.001) ×10−3 M. The biosensor showed excellent long-term storage stability, which originates from a strong adsorption of ChOx in the EACC multilayer film. When the present choline biosensor was applied to the analysis of phosphatidylcholine in serum samples, the measurement values agreed satisfactorily with those by a hospital method.  相似文献   

5.
A direct method for evaluating choline uptake by the high-affinity choline transport system in synaptosomes was developed using capillary electrophoresis (CE) with electrochemical (EC) detection. On-column EC detection of choline and the internal standard, butyrylcholine, was accomplished with a 25 microm platinum electrode modified with the enzymes, choline oxidase and acetylcholinesterase. Choline uptake was evaluated as a function of choline concentration and a KM value of 1.7 microM was determined. The method was also used to evaluate a new class of redox affinity inhibitors of choline transport. In particular, the effectiveness of 3-[(trimethylammonio)methyl]catechol (TMC) as an inhibitor of choline uptake was examined independently and relative to the inhibition of the well-known inhibitor of choline transport, hemicholinium-3. The IC50 and KI for TMC were determined to be 30 microM and 14 microM, respectively. The combination of the selectivity and sensitivity afforded by CEEC provides a relatively straightforward approach for monitoring choline transport in synaptosomes.  相似文献   

6.
Acetylcholine and choline sensors are prepared by immbilizing enzymes on nylon net attached to a hydrogen peroxide snsor. Choline oxidase is used for the choline sensor; acetylcholinesterase choline oxidase are used for acetylcholine. The platinum/silver electrode pair is polarized at +0.6 V. The assembly is protected with an acetate cellulose membrane to enhance selectivity. The ranges measured are 1–10 μmol l?1 in 0.1–1 ml of sample. The response times are 1–2 min.  相似文献   

7.
A sensor for acetylcholine/choline is described using a tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ) electrode modified with acetylcholine esterase (AChE) and choline oxidase (ChO) enzymes. DC cyclic voltammetry and impedance measurements of the enzyme-modified TTF-TCNQ electrode that indicate the regeneration of choline oxidase at the electrode surface are reported. Effective electrochemical rate constants for the present enzyme electrode are calculated using the expressions derived by Albery et al. (1), which show the enzyme kinetics as the rate-limiting step. The values of the effective electrochemical rate constants are close to those reported by Hale and Wightman (2). The application of the sensor is described for the determination of fluorode ion and nicotine based on the reversible inhibition of AChE activity. The range of detection of fluoride ion and nicotine is found to be 5×10-6 to 5×10-4M.  相似文献   

8.
A ceramic-based multisite microelectrode array to measure choline in vivo in brain tissues is described. The microelectrodes were linear to 200 μM choline (R2=0.999±0.001) with a detection limit of approximately 0.4 μM (S/N of 3) in both single microelectrode and self-referencing amperometric recording modes. The 90% rise time of the sensor was 1.4 s, allowing for rapid measures of choline. Good selectivity (>300:1) was observed over interferents such as ascorbic acid, uric acid, and DOPAC in the single microelectrode mode. However, a self-referencing recording mode was needed to remove potassium-evoked dopamine signals in rat striatum. In vivo measurements of choline in the rat brain are presented.  相似文献   

9.
A novel amperometric choline biosensor has been fabricated with choline oxidase (ChOx) immobilized by the sol-gel method on the surface of multi-walled carbon nanotubes (MWCNT) modified platinum electrode to improve the sensitivity and the anti-interferential property of the sensor. By analyzing the electrocatalytic activity of the modified electrode by MWCNT, it was found that MWCNT could not only improve the current response to H2O2 but also decrease the electrocatalytic potential. The effects of experimental variables such as the buffer solutions, pH and the amount of loading enzyme were investigated for the optimum analytical performance. This sensor shows sensitive determination of choline with a linear range from 5.0 × 10−6 to 1.0 × 10−4 mol/L when the operating pH and potential are 7.2 and 0.15 V, respectively. The detection limit of choline was 5.0 × 10−7 mol/L. Selectivity for choline was 9.48 μA·(mmol/L)−1. The biosensor exhibits excellent anti-interferential property and good stability, retaining 85% of its original current value even after a month. It has been applied to the determination of choline in human serum. Translated from Chinese Journal of Analytical Chemistry, 2006, 34(7): 910–914 (in Chinese)  相似文献   

10.
Choline and acetylcholine sensors were prepared by using choline oxidase and acetylcholinesterase, entrapped in photocross- linkable poly(vinyl alcohol) bearing styrylpyridinium (PVA-SbQ). The measurements were based on the detection of hydrogen peroxide liberated by an enzyme reaction (choline oxidase) or two sequential enzyme reactions (acetylcholine esterase and choline oxidase). The determination range for choline was 2.5-2-150 αmol 1-1 and for acetylcholine 20-2-750 αmol 1-1. The response times were 2-2-4 min. The immobilized enzyme membranes stored in a dry state were very stable and no loss of activity was observed after storage for 60 days.  相似文献   

11.
A sequential online extraction, clean‐up and separation system for the determination of betaine, l ‐carnitine and choline in human urine using column‐switching ion chromatography with nonsuppressed conductivity detection was developed in this work. A self‐packed pretreatment column (50 × 4.6 mm, i.d.) was used for the extraction and clean‐up of betaine, l ‐carnitine and choline. The separation was achieved using self‐packed cationic exchange column (150 × 4.6 mm, i.d.), followed by nonsuppressed conductivity detection. Under optimized experimental conditions, the developed method presented good analytical performance, with excellent linearity in the range of 0.60–100 μg mL−1 for betaine, 0.75–100 μg mL−1 for l ‐carnitine and 0.50–100 μg mL−1 for choline, with all correlation coefficients (R2) >0.99 in urine. The limits of detection were 0.15 μg mL−1 for betaine, 0.20 μg mL−1 for l ‐carnitine and 0.09 μg mL−1 for choline. The intra‐ and inter‐day accuracy and precision for all quality controls were within ±10.32 and ±9.05%, respectively. Satisfactory recovery was observed between 92.8 and 102.0%. The validated method was successfully applied to the detection of urinary samples from 10 healthy people. The values detected in human urine using the proposed method showed good agreement with the measurement reported previously.  相似文献   

12.
A sensitive biosensor with supramolecular architecture was designed and implemented here to detect choline. Choline oxidase and horseradish peroxidase were assembled onto the polymer of thiolated β-cyclodextrin and platinum nanoparticles modified gold electrode through 1-adamantane carboxylic acid coupling. Square wave voltammetry showed that the reduction currents at 0.38 mV had a linear relationship with the logarithms of choline concentrations in the range of 10−9-10−2 M, and the detection limit was down to 0.1 nM. Such biosensor also exhibited excellent selectivity, reproducibility and stability.  相似文献   

13.
In this work, we have developed a novel choline biosensor on the basis of immobilization of choline oxidase (ChOx) by the attractive materials layered double hydroxides (LDHs). Amperometric detection of choline was evaluated by holding the modified electrode at 0.5 V (vs. SCE). Due to the special properties of LDHs ([Zn3-Al-Cl]), such as chemical inertness, high porosity, and swelling property, the [Zn3-Al-Cl]/ChOx modified electrode exhibited an enhanced analytical performance. The biosensor provided a linear response to choline over a concentration range from 3.7 × 10−6 to 6.3 × 10−4 M with a low detection limit of 3 × 10−7 M based on S/N=3. The apparent Michaelis-Menten constant was calculated to be 1.38 mM. In addition, the interaction between ChOx and LDHs has also been investigated using FT-IR spectroscopy.  相似文献   

14.
A capillary electrophoresis method and a durable choline biosensor were developed for measuring serum cholinesterase (EC 3.1.1.8) activity, a useful clinical index for liver function. The former is based on separation of benzoate and benzoylcholine (the artificial substrate of cholinesterase) in an uncoated fused-silica capillary. The migration time of benzoylcholine and benzoate was 1.3 min and 5.5 min, respectively. By the peak areas of A233 signals, the linear dynamic ranges for both analytes were 0.01–50.0 mM, and the relative standard deviations of 1.0 mM benzoylcholine and benzoate were less than 4% and 6%, respectively.The FIA-choline sensor was constructed with the working electrode of the flow cell covered with a natural chitinous membrane purified from Taiwanese soldier crab, Mictyris brevidactylus. The biomembrane served as the supporting material for enzyme immobilization (choline oxidase, EC 1.1.3.17), and also prevented protein adsorption on the electrode surface. The calibration curve was linear between 0.05 and 5.0 mM (r = 0.999). The relative standard deviations for 1.0 mM choline (n = 7) were less than 3%, and the activity of the bioactive membrane lasted for about 2 months. The analytical results of both methods correlated well (r = 0.940).  相似文献   

15.
Acetylcholine chloride, like choline chloride, forms a liquid salt dihydrate, and a crystalline monohydrate that only exists at reduced pressure; at atmospheric pressure the monohydrate disproportionates into liquid dihydrate and anhydrous acetylcholine chloride. Both choline and acetylcholine chlorides give endothermic dissolution in water. In contrast, choline fluoride gives exothermic dissclution in water, and forms an extra-ordinarily stable monohydrate in which choline cation hydroxyls form strong hydrogen bonds to an H4O2F2?2 cluster anion. Since the hydration behavior of choline fluoride is like that of unsubstituted tetraalkylammonium fluorides, the unusual hydration behavior of choline and acetyline chlorides results from the presence of chloride ion, and is not an intrinsic property of cholinergic cations.  相似文献   

16.
Zeolite synthesis in contemporary chemical industries is predominantly conducted using organic structure-directing agents (OSDAs), which are chronically hazardous to humans and the environment. It is a growing trend to develop an eco-friendly and nuisanceless OSDA for zeolite synthesis. Herein, choline is employed as a non-toxic and green OSDA to synthesize high silica Y zeolite with SiO2/Al2O3 ratios of 6.5–6.8. The prepared Y zeolite samples exhibited outstanding (hydro)thermal stability at ultrahigh temperature owing to the higher SiO2/Al2O3 ratio. The XRF, SEM, 29Si-NMR and 13Na+ results suggested that choline plays a structure-directing role in the synthesis of Y zeolite, while the feed molar fraction of Na+ is a crucial determinant for the framework SiO2/Al2O3 ratio and the crystal morphology.  相似文献   

17.
A nano-composite consisting of amine functionalized multi-walled carbon nanotubes and a room temperature ionic liquid (1-butyl-3-methylimidazolium tetrafluoroborate) was prepared and used for modification of glassy carbon electrode. By immobilizing choline oxidase (ChOx) on the modified electrode, the enzyme direct electron transfer has been achieved. The modified electrode exhibited a pair of well-defined cyclic voltammetric peaks at a formal potential of ?0.395?V versus Ag/AgCl in 0.2?M phosphate buffer solution at pH 7.0. This peak was characteristic of ChOx-FAD/FADH2 redox couple. The electrochemical parameters such as charge transfer coefficient (??) and apparent heterogeneous electron transfer rate constant (k s) were estimated to be 0.36 and 2.74?s?1, respectively. When the enzyme electrode was examined for the detection of choline, a relatively high sensitivity (2.59???A?mM?1) was obtained. Under the optimized experimental conditions, choline was detected in the concentration range from 6.9?×?10?3 to 6.7?×?10?1?mM with a detection limit of 2.7???M. The peak currents of ChOx were reasonably stable and retained 90% of its initial current after a period of 2?months.  相似文献   

18.
Concentration range of solubilization of calix[4]resorcinarene (H8L) in sodium dodecyl sulfate (SDS) micelles was found. The interaction of the deprotonated form of H8L (tetraanions [H4L]4−) with tetramethylammonium (TMA) and choline cations in micellar solutions of SDS was studied by pH-metry and NMR spectroscopy. The concentration dependences of the change in the cloud point in a multicomponent system TMA (choline)-[H4L]4-SDS-tetrabutylammonium bromide were determined. A correlation of these dependences with host-guest binding processes was found. The sharp change in the cloud points of the corresponding micellar solutions in concentration regions of TMA (0-5·10−4 mol L−1) and choline (0–1.1· 10−3 mol L−1) is caused by the formation of inclusion complexes TMA (choline)-[H4L]4− at the interface of the aqueous and micellar pseudophases. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1366–1371, August, 2006.  相似文献   

19.
We report on the determination of choline and acetylcholine via biocentrivoltammetry. This method combines centrifugation and voltammetry and is based on a carbon paste electrode modified with acetylcholinesterase and choline oxidase. The electrode was placed at the bottom of a biocentrivoltammetric cell. Acetylcholine and choline are accumulated on the enzyme electrode via centrifugative forces, upon which a direct voltammetric scan is applied. Reaction time, pH values, quantities of enzyme and centrifugation parameters were optimized. A linear response is obtained in the 0.07 to 10?μM concentration range of acetylcholine, and a limit of detection as low as 0.5?μM. The linear range is between 0.1 and 500?μM for choline. The method was applied to the determination of acetylcholine and choline in spiked serum samples.
Figure
This work constitutes the first application of biocentri-voltammetry for ACh detection. Biocentri-voltammetry is the method where centrifuge and voltammetry is combined in a specially designed working cell. As a result, sensitive and effective biosensor was obtained.  相似文献   

20.
A biosensor was prepared for the determination of choline or acetylcholine by co-immobilizing choline oxidase and cholinesterase on a chemically preactivated membrane ready for use. This rapid procedure allows the coupling to be performed in a few minutes. The determination is based on the electrochemical detection of enzymatically generated hydrogen peroxide. This sensor has a detection limit of 5 × 10?8 M. The response was obtained in 2 min and was linear up to 2 × 10?5 M.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号