首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A computerized data acquisition technique— multichannel potentiometric monitoring—is used in conjunction with potentiometric stripping analysis. Multiple-scanning stripping potentiograms can be recorded so that the analytical signals are enhanced. A minicomputer with an internal store of4K 16-bit words suffices for experimental control and data treatment. The technique is suitable for stripping analysis with preconcentration times of 60–90 s at a mercury film electrode with linear response ranges of 1–100 μg l-1 for cadmium(II) and lead(II). For preconcentration times of 30 min, the limit of detection is about 5 ng l-1. Preliminary tests on continuous flow analysis are reported.  相似文献   

2.
Preconcentration is achieved by adsorption of a palladium-dimethylglyoxime complex on a hanging mercury drop electrode. Optimal conditions area stirred acetate buffer solution (pH 5.15) containing 2 × 10?4 M dimethylglyoxime and an accumulation potential of —0.20 V. The height of the stripping peak in a negative-going linear scan is linearly dependent on palladium concentration and preconcentration time (over the ranges 0–16 μg l?1 and 0–300 s, respectively). For a 10-min preconcentration time, the detection limit is 20 ng l?1 (2.1 × 10?10 M). Possible interferences by other trace metals are investigated. Palladium added to seawater samples was easily quantified.  相似文献   

3.
A rotating mercury-plated reticulated vitreous carbon (RVC) electrode is tested for square-wave anodic stripping voltammetry; RVC provides very large surface areas which are easily plated with mercury. Despite the ill-defined geometry of the electrode, the square-wave stripping peaks are very well defined; their behaviour conforms partly to known theory for square-wave stripping from mercury film electrodes. Fast analytical determinations of lead and cadmium in the μg l?1 range are facilitated by the high efficiency of the preconcentration step and the high sensitivity given by the stripping waveform.  相似文献   

4.
Cylindrical gold film micro-electrodes are easily produced by plasma-sputtering of gold onto carbon fiber electrodes. The micro-electrodes produced were found to maintain their cylindrical geometry indefinitely, unlike gold wire electrodes of similar dimensions. Application of these electrodes in differential-pulse anodic stripping voltammetry provides a method for quantifying trace levels of mercury(II). Up to 100 μg l?1 Hg(II) the area of the mercury stripping peak varied linearly with mercury concentration; the detection limit was 3.7 μg l?1. With more than 100 μg l?1 Hg(II) a new mercury stripping peak grows in at less positive potentials; its peak height is linear with Hg(II) concentration.  相似文献   

5.
Total arsenic in sea water is determined in a fully automated flow system, by means of potentiostatic deposition for 4 min at a 25-μm gold fibre electrode and subsequent constant-current stripping in 5 M hydrochloric acid. Previously the sample is acidified with hydrochloric and arsenic(V) is reduced to arsenic(III) with iodide. During stripping, the potential vs. time transient is recorded with a real-time measurement rate of 26.5 kHz and a potential resolution of 1 mV. Cleaning and regeneration of the gold electrode are fully automated. The total arsenic concentrations in two reference sea waters (NASS-1 and CASS-1) were evaluated by single-point standard addition and found to be 1.58 and 1.14 μg l?1 with standard deviations of 0.39 and 0.28 μg l?1, respectively; certified values are 1.65 ± 0.19 and 1.04 ± 0.07 μg l?1. The arsenic(III) content in these samples was below the detection limit (0.15 μg l?1).  相似文献   

6.
At concentrations above 50 μg l?1, silver(I) is determined in nitric acid medium by means of potentiostatic deposition onto a platinum-fibre electrode and subsequent constant-current stripping in the sample or potentiometric stripping in a potassium permanganate medium. Interference from copper(II) is reduced by a pulsed potential procedure whereby copper deposited onto the fibre electrode is reoxidized intermittently. At concentrations below 50 μg l?1, silver(I) is determined by using a mercury-coated carbon-fibre electrode and constant-current stripping in acetonitrile containing 0.20 M perchloric acid. Potentiostatic deposition for 30 min yielded a detection limit of 0.24 μg l?1 silver(I) at the 3σ level.  相似文献   

7.
Differential-pulse anodic stripping voltammetry at a mercury microelectrode is applied to determine labile and total zinc, cadmium, lead and copper in samples of rain and sea water. The low ohmic drop associated with microelectrodes permits reliable measurements in rain water without addition of supporting electrolyte. The values found in a typical sample were 0.95 μg l?1 Cu, 0.38 μg l?1 Pb, 0.01 μg l?1 Cd and 0.95 μg l?1 Zn, with relative standard deviations in the range 4–18%. The small effects of organic matter at microelectrodes, compared with those at a hanging mercury drop electrode, allow sensitive and reliable measurements of labile metals in surface sea water. Total metal concentrations are determined after acidification to pH 1.5 with hydrochloric acid. The results are compared with those obtained with atomic absorption spectrometry and with differential-pulse anodic stripping voltammetry at conventional mercury electrodes. Satisfactory results were obtained for a reference sea water.  相似文献   

8.
An automated (24 samples/hour) procedure is described for the determination of lead (0–1000 μg l?1) in human blood based on flow-injection stripping potentiometry. The samples are diluted 20-fold with 0.5 M hydrochloric acid containing 100 mg l?1 mercury and 40 μg l?1 cadmium (II), and a 1.1 ml aliquot is injected into the flow system. With a mercury-coated carbon fibre as working electrode, lead (II) is determined by using cadmium (II) as internal standard and a calibration graph prepared from bovine blood. Analyses of two human blood reference samples yielded results of 335±37 and 691±24 μg l?1 lead, the certified values being 332 and 663 μg l?1, respectively.  相似文献   

9.
A very sensitive electrochemical stripping procedure for aluminum is reported. Accumulation is achieved by controlled adsorption of the aluminum/solochrome violet RS complex on the static mercury drop electrode. Optimal experimental parameters include an accumulation potential of ?0.45 V, solochrome violet RS concentration of 1 × 10?6 M, and a linear-scan stripping mode. The detection limit is 0.15 μg l?1, the response is linear over the 0–30 μg l?1 concentration range, and the relative standard deviation (at the 10 μg l?1 level) is 2%. Most cations do not interfere in the determination of aluminum. The interference of iron(III) is eliminated by addition of ascorbic acid. Results are reported for snow samples.  相似文献   

10.
Uranium(VI) is determined in an automated flow system by means of constant-current reductive stripping with a mercury film-coated carbon fibre electrode and catechol as adsorptive reagent at pH 8.6 Interference from iron(III) is eliminated by addition of sulphite. Increased linear range between stripping signal and sample uranium(VI) concentration can be obtained by adding, in the computer, several stripping curves, each obtained after a short period of adsorptive accumulation. It is shown that the hanging mercury drop electrode can be used for the determination of uranium(VI) by means of computerized constant current stripping without the need for inert gas bubbling. The results obtained for uranium(VI) in two reference seawater samples, NASS-1 and CASS-1, were 2.90 and 2.68 μg l?1 with standard deviations (n = 8) of 0.57 and 0.75 μg l?1, respectively.  相似文献   

11.
A dual direct method for the ultratrace determination of thallium in natural waters by differential pulse anodic stripping voltamrnetry (d.p.a.s.v.) is presented. D.p.a.s.v. at the hanging mercury drop electrode and at the mercury film electrode is used in the concentration ranges 0.5–100 μg Tl l-1, and 0.01–10 μg Tl l-1, respectively. Quantification is aided by the technique of standard additions. The response of the method is optimized for typical natural surface water matrices. An intercomparison of thalium determinations performed by the two anodic stripping methods and electrothermal-atomization atomic absorption spectrometry on normal and thallium-spiked surface water samples demonstrates equivalent accuracy within the range where atomic absorption is applicable. The method appears free from serious interferences.  相似文献   

12.
《Analytical letters》2012,45(6):1223-1234
Abstract

The stripping potentiometric determination of lead, cadmium and copper with mercury film glassy-carbon electrodes coated with a Nafion membrane was investigated. The mercury film was plated using either mercury(II) acetate encapsulated within the Nafion membrane or a mercury(II) solution. Dissolved dioxygen was used as the stripping agent. The electrodes showed promising properties, particularly robustness and response repeatability. A linear dependence of the stripping time on concentration was found in the μg l?1 concentration range (s.d. of intercept ≤ 0.3 μg l?1, r.s.d. of slope ≤ 1%, for both lead and cadmium).  相似文献   

13.
A carbon paste electrode modified with 2‐aminothiazole functionalized poly(glycidylmethacrylate‐methylmethacrylate‐divinylbenzene) microspheres was used for trace determination of mercury, copper and lead ions. After the open‐circuit accumulation of the heavy metal ions onto the electrode, the sensitive anodic stripping peaks were obtained by square wave anodic stripping voltammetry (SWASV)). Many parameters such as the composition of the paste, pH, preconcentration time, effective potential scan rate and stirring rate influence the response of the measurement. The procedures were optimized for most sensitive and reliable determinations of the desired species. For a 10‐min preconcentration time in synthetic solutions at optimum instrumental and experimental conditions, the detection limit (LOD) was 12.3, 2.8 and 4.5 μg L?1 for mercury, copper and lead, respectively. The limits of detection may be enhanced by increasing the preconcentration time. For example, LOD of mercury and copper was 4.9 and 1.0 μg L?1 for fifteen minutes preconcentration time. The sensitivity may also considered to be increased by using a more suitable electrode composition targeting the more conductive electrode with lesser amount of modified polymer for sub‐μg L?1 levels of heavy metal ions. The optimized method was successfully applied to the determination of copper in tap water and waste water samples by means of standard addition procedure. The copper content found was comparable with the certified concentration of the waste water sample. The calibration plots for mercury and lead spiked real samples were also drawn.  相似文献   

14.
A radiochemical neutron activation method for the simultaneous determination of arsenic, cadmium, cobalt, mercury, molybdenum, and zinc in fresh water is described. The method is based on anion-exchange separation in hydrochloric acid media followed by simple precipitations. The determination limits, based on analysis of a 5-ml sample without preconcentration, and with a well-type NaI(Tl) detector, are as follows: As, 10-3 μg l-1 ; Cd, 6 × 10-2 μg l-1 ; Co, 4 × 10-3 μg l-1 ; Hg, 7 × 10-3 μg l-1 ; Mo, 10-1 μg l-1 ; Zn, 2 × 10-1 μg l-1. The method is adequate for the analysis of natural fresh waters.  相似文献   

15.
Molybdenum(VI) in seawater is determined by means of potentiostatic adsorption of the 8-quinolinol complex onto a mercury film electrode at ?0.2 V vs. SCE and subsequent reduction of the complex by means of constant-current stripping in 5 M calcium chloride medium with a fully automated stripping analyzer. A single stripping peak at –0.42 V vs. SCE was obtained. The molybdenum(VI) concentration in reference seawater NASS-1, with a certified value of 11.5 ± 1.9 μg 1?1, was found to be 8.9 ± 1.3 μg 1?1 (n = 10).  相似文献   

16.
Water samples of total volume 0.5–5 l, containing mercury in the range 0.05–5 μg l-1 are oxidized with excess of potassium permanganate and then reduced with tin(II) chloride. The mercury is transferred to 5–10 ml of a dilute potassium permanganate trap solution by cycling air through the sample and the trap solution. The mercury(II) content of the trap solution is determined by potentiometric stripping analysis. The accuracy, precision and detection limit of the technique are discussed.  相似文献   

17.
The fluoroquinolone antibacterial agent ofloxacin was studied by adsorptive stripping voltammetry. Controlled interfecial accumulation of ofloxacin on a static mercury drop electrode in the hanging mercury drop mode provides high sensitivity. The linear concentration range was 0.079–197.5 μg ml?1 when using a 60-s preconcentration at ?1 V vs. Ag/AgCl in Britton-Robinson buffer of pH 6.00. The detection limit of ofloxacin was 1 ng ml?1. The precision is excellent with a relative standard deviation of ca. 0.75% at a concentration of 0.848 μg ml?1.  相似文献   

18.
Robert Piech 《Electroanalysis》2010,22(16):1851-1856
A new adsorptive stripping voltammetric method for the determination of trace scandium(III) based on the adsorption of scandium(III)‐mordant blue 9 complex on the cyclic renewable mercury film silver based electrode (Hg(Ag)FE) is presented. The effects of various factors such as: preconcentration potential and time, pulse height, step potential and supporting electrolyte composition are optimized. The calibration graph is linear from 2 nM (0.09 μg L?1) to 90 nM (4 μg L?1) for a preconcentration time of 45 s, with correlation coefficient of 0.9995. For a Hg(Ag)FE with a surface area of 7.9 mm2 the detection limit for a preconcentration time of 90 s is as low as 5 ng L?1. The repeatability of the method at a concentration level of the analyte as low as 0.2 μg L?1, expressed as RSD is 1.9 % (n=5). The proposed method was successfully applied and validated by studying the certified reference material (CRM 320 – river sediment) and natural samples with simultaneous recovery of Sc(III) from spiked water and sediment samples.  相似文献   

19.
Robert Piech 《Electroanalysis》2009,21(16):1842-1847
A new adsorptive stripping voltammetric method for the determination of trace gallium(III) based on the adsorption of gallium(III)‐catechol complex on the cyclic renewable mercury film silver based electrode (Hg(Ag)FE) is presented. The effects of various factors such as: preconcentration potential and time, pulse height, step potential and supporting electrolyte composition are optimized. The calibration graph is linear from 2 nM (0.14 μg L?1) to 100 nM (6.97 μg L?1) for a preconcentration time of 30 s, with correlation coefficient of 0.9993. For a Hg(Ag)FE with a surface area of 9.7 mm2 the detection limit for a preconcentration time of 90 s is as low as 7 ng L?1. The repeatability of the method at a concentration level of the analyte as low as 0.05 μg L?1, expressed as RSD is 3.6% (n=5). The proposed method was successfully applied by studying the natural samples and simultaneous recovery of Ga(III) from spiked water and sediment samples.  相似文献   

20.
A sensitive, automated method for the determination of boron in water samples is described, involving flow injection with on-line ion-exchange preconcentration and spectrophotometric detection of the azomethine-H—boron complex. The method is applicable to various water samples and is free from interferences, even in coloured samples. Detection limits of 5 μg l?1 at 20 samples h?1 and 1 μg l?1 at 10 samples h?1 with relative standard deviations of < 10% at 1–10 μg l?1 and < 5%at 10–200 μg l?1 levels of boron were achieved. The recoveries for spiked natural water samples ranged from 96 to 101%. The method compares favourably with inductively coupled plasma atomic emission spectrometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号