首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The construction and operation of ion-selective field effect transistors (ISFET) with polymeric membranes are described, and their electrical and chemical performance are discussed. The H+, K+, and Ca2+ ISFET's all show responses similar to those of the corresponding ion-selective electrodes, with t95% response times of approximately 40 ms and accurate ion activity measurements for periods up to one month.  相似文献   

2.
  相似文献   

3.
Ion-selective electrodes (ISEs) are used widely in mainframe analyzers for clinical chemistry, but there is also an increasing interest in the development of paper-based devices, wearable and implantable sensors, and other miniaturized ISEs. This trend is spurring much research in developing solid contact materials that enable miniaturization. The development of suitable polymeric matrixes for such sensors has only received less attention. In particular, in spite of lifetime limitations and toxicity concerns, polymeric matrixes comprising plasticizers are still commonly used. To that end, we note the benefits of silicone materials as alternative polymeric matrixes and, in particular, their promise for enhanced biocompatibility. While there has been steady progress in the development of ISEs with silicone membranes, this topic has not been reviewed for many years. This review critically discusses key fundamental characteristics of ISEs with silicone sensing and reference membranes, including their biocompatibility, adhesion to device substrates, water uptake, polarity, common impurities, and commercial availabilities. This is followed by a discussion of specific types of silicones and their use in ISEs, with the goal to inform and stimulate future research efforts into such devices.  相似文献   

4.
《Sensors and Actuators》1984,5(2):127-136
Two type of ISFETs with electrostatic protection have been designed and tested. They both utilize an electrically conductive layer incorporated into the gate of the ISFET. This layer is connected via an on-chip MOSFET switch to the outside circuitry. In the first type the conductor is capacitively coupled to the ion-selective membrane and to the solution. In this case the device output is proportional to the time differential of the concentration change. The applicability of this device to high-speed FIA titrations has been tested.In the second device the gate electrically contacts the membrane. In this case the output is identical to that of a conventional ISFET. The signal-to-noise ratio and the electrostatic protection of this ISFET are considerably improved.  相似文献   

5.
Different hydrophobic polymers were used for chemical modification of ion-sensitive field effect transistors (ISFETs) in order to prepare a reference FET (REFET). Chemical attachment of the polymer to the ISFET gate results in a long lifetime of the device. Properties of polyacrylate (polyACE) REFETs are described in detail. The polyACE-REFET is superior to other polymer modified REFETs, showing an excellent pH insensitivity (?1 mV pH?1), a long lifetime and an electrically identical behaviour as an unmodified pH ISFET or a cation-selective PVC-MEMFET (membrane FET). The cation permeselectivity of the polymer can be significantly reduced by addition of immobile cations. The applicability of a polyACE-REFET in differential measurements with a pH ISFET and a K+ MEMFET is demonstrated.  相似文献   

6.
Novel butterfly pyrene derivatives functionalized with trifluoromethylphenyl and thienyl aromatic groups in the 1-, 3-, 6- and 8-positions of pyrene cores and have been synthesized by Suzuki coupling reactions, and their crystal structures, optical and electrochemical properties investigated; additionally, the field effect transistor using as the active material exhibited a p-type performance.  相似文献   

7.
Single-crystal field effect transistors of the organic semiconductor dithiophene-tetrathiafulvalene (DT-TTF) were prepared by drop casting. Long, thin crystals connected two microfabricated gold electrodes, and a silicon substrate was used as a back gate. The highest hole mobility observed was 1.4 cm2/Vs, which is the highest reported for an organic semiconductor not based on pentacene. A high ON/OFF ratio of at least 7 x 105 was obtained for this device.  相似文献   

8.
Enzyme-modified field effect transistors (ENFETs) were realized using surface-conductive single-crystalline diamond films. The enzymes penicillinase and acetylcholinesterase were immobilized onto the active area of diamond-based electrolytic solution gated FETs, using different organic linker molecules and cross-linking chemistries. The active area of the devices was patterned to generate enzyme-modified regions next to surface-conductive regions. Penicillinase was chosen as a robust model system, but the main focus of the present paper is on acetylcholinesterase, an enzyme essential for many neuronal signal transduction processes. All the different ENFETs show a clear and specific response to the corresponding substrate, penicillin and acetylcholine. The device response is based on the pH sensitivity of the surface-conductive active area and is enabled by the local pH change induced during the enzymatic reaction. The devices demonstrate promising stability and characteristic variations of the enzymatic activity with measurement conditions. Furthermore, the results from the ENFET measurements were compared with the results of spectrophotometric experiments, carried out with enzymes immobilized on diamond substrates and also with free enzymes in solution. This allows an analysis of the enzyme kinetics, as well as qualitative comparison of the different functionalization methods employed in this study.  相似文献   

9.
The sol-gel-derived lead titanate (PbTiO3) membrane has been successfully applied as a pH sensitive layer to form the PbTiO3 gate ion-sensitive field-effect transistor (ISFET). There exhibit the excellent quasi-Nernstian response of 56-59 mV pH−1, good surface adsorption and anticorrosion characteristics via the C-V measurement of the EIS structure. At a specific pH concentration, the output and transfer characteristics are very similar to the behaviours of MOSFETs, and the ISFET model can be derived by the modified MOSFET model. As it operated in the nonsaturation region, there exhibits a linear pH response of about 56-59 mV pH−1. On the other hand, as it operated in the saturation region, the pH response and linearity can be controlled by adjusting the VGS values, e.g. the pH responses of −4.2, −24.8 and −31.3 μA pH−1 and the correlation coefficients of 0.9491, 0.9995 and 0.9996 at VGS=1, 3 and 5 V can be obtained, respectively. Besides, in order to get the best pH response and the minimized leakage current, the heat treatment temperature of the PbTiO3 membrane must be limited between 350 and 450 °C.  相似文献   

10.
The results of studying the surface morphology of heterogeneous cation-(MK-40) and anion-exchange (MA-40) membranes and calculating the structure of electroconvective vortices generated by the electric body force are shown. The body force and its distribution are estimated by taking into account real parameters of the membrane surface morphology. The calculations of vortices were carried out by solving the Navier-Stokes equation with the no-slip boundary condition and the preset body force distribution. It is shown that the body force induced by the flowing current can generate pairs of electroconvective vortices (electroosmosis of the second kind), where the size of induced vortices is comparable with the intermembrane gap in electrodialysis cells.  相似文献   

11.
Conclusion The potassium ion-sensitive membrane, prepared by the inclusion of valinomycin and plasticizer into the photoresist proved to be a good potassium ion-sensitive membrane for the ISFET. The plasticizer was found to play an important role in the photoresist membrane to obtain potassium ion-sensitivity. The plasticizer photoresist membrane showed not only more sensitivity but also longer term stability than the plasticized PVC membrane. It is concluded that the plasticized photoresist membrane deposited at the gate region of the ISFET works satisfactory for the determination of potassium ion activity in aqueous solution.
Kalium-ionensensitive Feldeffekt-Transistoren mit Valinomycin-dotierten photoresistenten Membranen
  相似文献   

12.
By performing first-principles transport simulations, we demonstrate that n-type transfer curves can be obtained in armchair-edged graphene nanoribbon field effect transistors by the potassium atom and cobaltocene molecule doping, or substituting the carbon by nitrogen atom. The Dirac point shifts downward from 0 to ?12?V when the n-type impurity concentration increases from 0 to 1.37%, while the transfer curves basically maintain symmetric feature with respect to the Dirac point. In general, the on/off current ratios are decreased and subthreshold swings are increased with the increasing doping level. Therefore, the performance of armchair-edged graphene nanoribbon field effect transistors can be controlled via tuning the impurity doping level.  相似文献   

13.
Abstract  Research into organic field effect transistors (OFETs) has made significant advances—both scientifically and technologically—during the last decade, and the first products will soon enter the market. Printed electronic circuits using organic resistors, diodes and transistors may become cheap alternatives to silicon-based systems, especially in large-area applications. A key parameter for device operation, besides long term stability, is the reproducibility of the current–voltage behavior, which may be affected by hysteresis phenomena. Hysteresis effects are often observed in organic transistors during sweeps of the gate voltage (V GS). This hysteresis can originate in various ways, but comparative scientific investigations are rare and a comprehensive picture of “hysteresis phenomena” in OFETs is still missing. This review provides an overview of the physical effects that cause hysteresis and discusses the importance of such effects in OFETs in a comparative manner. Graphical abstract     相似文献   

14.
An enzyme electrode for neutral lipid determination based on hydrogen ion-sensitive field effect transistors (pH-FET's) is described. The electrode is composed of two pH-FET's with an immobilized lipase membrane on one pH-FET, and a platinum wire. Triglycerides are solubilized with 10% (v/v) Triton X-100. The electrode is used to determine triglycerides over wide concentration ranges with response times of ca. 2 min. Relations between signal and the logarithm of the concentration are linear over the ranges 100–400 mM triacetin, 3–50 mM tributylin and 0.6–3 mM triolein. In the case of triolein, the detection limit is 9 μg ml?1 (signal/noise = 3:1). The effect of Triton X-100 on the electrode response is discussed.  相似文献   

15.
Two conjugated copolymers, PPTQT and PTTQT, were developed based on thiadiazoloquinoxalines connected via ethynylene π-spacer to thiophene units. PPTQT showed maximum hole and electron mobility of 0.028 and 0.042 cm(2)/V s, respectively, being the first example of an ambipolar semiconducting material bearing triple bonds in the polymer backbone.  相似文献   

16.

Abstract  

Research into organic field effect transistors (OFETs) has made significant advances—both scientifically and technologically—during the last decade, and the first products will soon enter the market. Printed electronic circuits using organic resistors, diodes and transistors may become cheap alternatives to silicon-based systems, especially in large-area applications. A key parameter for device operation, besides long term stability, is the reproducibility of the current–voltage behavior, which may be affected by hysteresis phenomena. Hysteresis effects are often observed in organic transistors during sweeps of the gate voltage (V GS). This hysteresis can originate in various ways, but comparative scientific investigations are rare and a comprehensive picture of “hysteresis phenomena” in OFETs is still missing. This review provides an overview of the physical effects that cause hysteresis and discusses the importance of such effects in OFETs in a comparative manner.  相似文献   

17.
Thanks to the pure blue emitting, high planarity, electron rich and ease of chemical modification, pyrene has been thoroughly investigated for applications in organic electronics such as organic light emitting diodes (OLEDs), organic field effect transistors (OFETs), and organic solar cells (OSCs). Especially, great progresses have been made of pyrene-based organic semiconductors for OFETs in past decades. Due to the difference of molecular structure, pyrene-based organic semiconductors are divided into three categories, pyrene as terminal group, pyrene as center core and fused pyrene derivatives. This minireview gives a brief introduction of the structure-property relationship and application in OFETs about most of pyrene-based semiconducting materials since 2006, illustrating that pyrene is a good building block to construct semiconductors with superior transport property for OFETs. Finally, we provide a summary concerning the methodology to improve the transport property of the pyrene-based semiconducting materials as well as an outlook.  相似文献   

18.
In this communication, we report results obtained using surface-sensitive IR+Visible Sum Frequency Generation (SFG) nonlinear optical spectroscopy on interfaces of organic field effect transistors during operation. We observe remarkable correlations between trends in the surface vibrational spectra and electrical properties of the transistor, with changes in gate voltage (VG). These results suggest that field effects on electronic conduction in thin film organic semiconductor devices are correlated to interfacial nonlinear optical characteristics and point to the possibility of using SFG spectroscopy to monitor electronic properties of OFETs.  相似文献   

19.
Cid CC  Riu J  Maroto A  Rius FX 《The Analyst》2008,133(8):1001-1004
We report a new type of ion-sensitive field effect transistor (ISFET). This type of ISFET incorporates a new architecture, containing a network of single-walled carbon nanotubes (SWCNTs) as the transduction layer, making an external reference electrode unnecessary. To show an example of its application, the SWCNT-based ISFET is able to detect at least 10(-8) M of potassium in water using an ion-selective membrane containing valinomycin.  相似文献   

20.
The sensor for adenosine-5′-triphosphate (ATP) is based on H+-ATPase immobilized via a polyvinylbutyral resin on a pH-sensitive field effect transistor. A linear relationship was obtained between the initial rate of change of the differential gate output voltage and the logarithm of the ATP concentration over the range 0.2–1.0 mM ATP. The optimum pH was 9.0 at 40°C but pH 7.0 was preferred for routine measurements. Only slight responses were obtained for 1 mM glucose, creatinine or urea. The ATP-sensing system exhibited a response to 1 mM ATP for at least 18 days.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号