首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2-Halophenyl ketones 1a-e (1a, o-IC(6)H(4)COCH(3)) undergo carbocyclization with alkyl propiolates (2a, CH(3)(CH(2))(4)C[triple bond]CCO(2)CH(3); 2b, TMSC[triple bond]CCO(2)Et 2c, CH(3)C[triple bond]CCO(2)CH(3); 2d, CH(3)OCH(2)C[triple bond]CCO(2)CH(3); 2e, CH(3)(CH(2))(3)C[triple bond]CCO(2)CH(3); 2f, PhC[triple bond]CCO(2)CH(3); and 2g, (CH(3))(3)C[triple bond]CCO(2)CH(3)) in the presence of Ni(dppe)Br(2) and zinc powder in acetonitrile at 80 degrees C to afford the corresponding indenol derivatives 3a-m with remarkable regioselectivity in good to excellent yields. The nickel-catalyzed carbocyclization reaction was successfully extended to other simple disubstituted alkynes. Thus, the reaction of 2-halophenyl ketones 1a-e with disubstituted alkynes (2h, PhC[triple bond]CPh; 2i, CH(3)C(6)H(4)C[triple bond]CC(6)H(4)CH(3); 2j, CH(3)CH(2)C[triple bond]CCH(2)CH(3); 2k, PhC[triple bond]CCH(3); 2l, TMSC[triple bond]CCH(3); and 2m, PhC[triple bond]C(CH(2))(3)CH(3)) proceeded smoothly to afford the corresponding indenols 4a-t in good to excellent yields. For unsymmetrical alkynes 2k-m, the carbocyclization gave two regioisomers with regioselectivities ranging from 1:2 to 1:12 depending on the substituents on the alkyne and on the aromatic ring of halophenyl ketone. A possible mechanism for this nickel-catalyzed carbocyclization reaction is also proposed.  相似文献   

2.
Phosphonoketene dithioacetals 3a-e were obtained in good yields by the reaction of ethyl phosphonoacetates 1a,b with 2-4 equiv of thiols 2a-c in the presence of an alkylaluminum dichloride or dialkylaluminum chlorides. Reaction of 2,2-dithio-1-phosphonovinyl anions with aldehydes afforded allylic alcohols 4-7, 11-18 in good to moderate yields. Treatment of the alcohols 4-6 with t-BuOK in THF led to symmetrical [2 + 2] cycloadducts 20-22 of 1,1-(ethylenedithio)allenes in moderate yields, while a similar reaction of the alcohols 11-13 produced a mixture of symmetrical and unsymmetrical [2 + 2] cycloadducts of 1,1-(trimethylenedithio)allenes,23a-25a and 23b-25b, in 55-94% yields. The alcohol 15 on a similar treatment gave 3-tert-butyl-1,1-bis(ethylthio)allene (26) in quantitative yield. The structures of 20 and 23b were determined by X-ray analysis. Treatment of the alcohols 15 and 18 with trifluoromethanesulfonic acid/n-Bu(4)NX (X = Br, I) or triphenylphosphine/CBr(4) in CH(2)Cl(2) afforded alpha-phosphonodithioacryclic acid esters 34 and 35 in 25-52% yields. The tandem Michael-Wittig reaction of 35 with sodium salt of 2-pyrrolecarbaldehyde in DMF gave ethyl 3-phenyl-3H-cyclopenta[a]pyrrole-2-dithiocarboxylate (36) in 25% yield.  相似文献   

3.
Initial examples of the intermolecular Rh(I)-catalyzed [5+2] cycloaddition reaction of bifunctional allenes and vinylcyclopropanes are described. The reactions proceed with facility and in yields of up to 99% with a variety of alkyne-, ester-, styrene-, or cyano-substituents on the allene to afford the corresponding cycloadducts. In the presence of CO, the reaction proceeds to an eight-membered ring cycloadduct and its transannularly closed product, providing the first example of a three-component [5+2+1] cycloaddition with allenes.  相似文献   

4.
An allene to allene protocol for the synthesis of beta-allenyl butenolides in moderate to high yields from 2,3-allenoic acids and propargylic carbonates catalyzed by Pd(OAc)2-TFP has been developed; the products were applied successfully to the Diels-Alder reaction with electron-deficient alkynes to afford polysubstituted benzene derivatives with an excellent regioselectivity.  相似文献   

5.
Spirocyclic phosphonium salts of the type [(CH(2))(4)P(CH(2))(4)](+) X(-) with X = I(3) (1a), I (1b), picrate (1c), benzoate (1d), and Cl (1e) were prepared from 1,4-diiodobutane and elemental phosphorus followed by metathesis reactions. The crystal structures of 1b and 1c and of 1d(H(2)O) have been determined by X-ray diffraction methods. In the cations of these salts the phosphorus atoms are shared by two five-membered rings in envelop conformations. In the picrate 1c the cations show an unsymmetrical ring folding pattern (point group C(1)), while the geometry of the cations of the iodide 1b and the benzoate hydrate [1d(H(2)O)] approaches the symmetry of point group C(2). These structures can be taken as models for the as yet unknown molecular geometries of the corresponding hydrocarbon (CH(2))(4)C(CH(2))(4) and silane (CH(2))(4)Si(CH(2))(4). Treatment of 1e with organolithium reagents RLi affords spirocyclic pentaorganophosphoranes RP[(CH(2))(4)](2) with R = Me, Et, n-Bu, Vi, and Ph (2a-e) in good (R = Me, Et, n-Bu) to low yields (R = Vi, Ph). The products are isolated as colorless liquids, of which only 2a, 2b, and 2d can be distilled without decomposition. Single crystals of 2a were obtained by low-temperature in situ crystal growth. The molecule has a trigonal bipyramidal configuration with the methyl group in an equatorial position and the two five-membered rings spanning axial/equatorial positions of the polyhedron. Deviations from the standard trigonal bipyramidal geometry are small. The compounds 2a-e are fluctional in solution as demonstrated by NMR spectroscopy.  相似文献   

6.
Organolanthanide complexes of the type Cp'(2)LnCH(SiMe(3))(2) (Cp' = eta(5)-Me(5)C(5); Ln = La, Nd, Sm, Lu) and Me(2)SiCp' '(2)LnCH(SiMe(3))(2) (Cp' ' = eta(5)-Me(4)C(5); Ln = Nd, Sm, Lu) serve as efficient precatalysts for the regioselective intermolecular hydroamination of alkynes R'Ctbd1;CMe (R' = SiMe(3), C(6)H(5), Me), alkenes RCH=CH(2) (R = SiMe(3), CH(3)CH(2)CH(2)), butadiene, vinylarenes ArCH=CH(2) (Ar = phenyl, 4-methylbenzene, naphthyl, 4-fluorobenzene, 4-(trifluoromethyl)benzene, 4-methoxybenzene, 4-(dimethylamino)benzene, 4-(methylthio)benzene), di- and trivinylarenes, and methylenecyclopropanes with primary amines R' 'NH(2) (R' ' = n-propyl, n-butyl, isobutyl, phenyl, 4-methylphenyl, 4-(dimethylamino)phenyl) to yield the corresponding amines and imines. For R = SiMe(3), R = CH(2)=CH lanthanide-mediated intermolecular hydroamination regioselectively generates the anti-Markovnikov addition products (Me(3)SiCH(2)CH(2)NHR' ', (E)-CH(3)CH=CHCH(2)NHR' '). However, for R = CH(3)CH(2)CH(2), the Markovnikov addition product is observed (CH(3)CH(2)CH(2)CHNHR' 'CH(3)). For internal alkynes, it appears that these regioselective transformations occur under significant stereoelectronic control, and for R' = SiMe(3), rearrangement of the product enamines occurs via tautomerization to imines, followed by a 1,3-trimethylsilyl group shift to stable N-SiMe(3)-bonded CH(2)=CMeN(SiMe(3))R' ' structures. For vinylarenes, intermolecular hydroamination with n-propylamine affords the anti-Markovnikov addition product beta-phenylethylamine. In addition, hydroamination of divinylarenes provides a concise synthesis of tetrahydroisoquinoline structures via coupled intermolecular hydroamination/subsequent intramolecular cyclohydroamination sequences. Intermolecular hydroamination of methylenecyclopropane proceeds via highly regioselective exo-methylene C=C insertion into Ln-N bonds, followed by regioselective cyclopropane ring opening to afford the corresponding imine. For the Me(2)SiCp' '(2)Nd-catalyzed reaction of Me(3)SiCtbd1;CMe and H(2)NCH(2)CH(2)CH(2)CH(3), DeltaH() = 17.2 (1.1) kcal mol(-)(1) and DeltaS() = -25.9 (9.7) eu, while the reaction kinetics are zero-order in [amine] and first-order in both [catalyst] and [alkyne]. For the same substrate pair, catalytic turnover frequencies under identical conditions decrease in the order Me(2)SiCp' '(2)NdCH(SiMe(3))(2) > Me(2)SiCp' '(2)SmCH(SiMe(3))(2) > Me(2)SiCp' '(2)LuCH(SiMe(3))(2) > Cp'(2)SmCH(SiMe(3))(2), in accord with documented steric requirements for the insertion of olefinic functionalities into lanthanide-alkyl and -heteroatom sigma-bonds. Kinetic and mechanistic evidence argues that the turnover-limiting step is intermolecular C=C/Ctbd1;C bond insertion into the Ln-N bond followed by rapid protonolysis of the resulting Ln-C bond.  相似文献   

7.
A new method for the synthesis of substituted 2-acylallylmetal reagents in a highly regio- and stereoselective fashion involving a three-component assembly of allenes, acyl chlorides, and bimetallic reagents (B-B, Si-Si, and Sn-Sn) catalyzed by phosphine-free palladium complexes is described. Treatment of various allenes (CR(2)R(3)=C=CH(2)) with acyl chlorides (R(1)COCl) and bispinacolatodiboron in the presence of PdCl(2)(CH(3)CN)(2) in toluene at 80 degrees C gave 2-acylallylboronates in moderate to good yields. The acylsilation of allenes with acid chlorides and hexamethyldisilane (5) proceeded successfully in the presence of Pd(dba)(2) in CH(3)CN affording the corresponding allylsilanes (CR(2)R(3)=C(COR(1))CH(2)SiMe(3)) in good to moderate yields. Several chloroformates (R(4)OCOCl) also react with 1,1-dimethylallene (2a) and 5 to afford allylsilanes (CR(2)R(3)=C(COOR(4))CH(2)SiMe(3)) in 66-70% yields. Acylstannation of allenes could also be achieved by slow addition of hexabutylditin (10) to the reaction mixture of acyl chloride (or chloroformate) and allene 2a in CH(3)CN in the presence of Pd(dba)(2) at 60 degrees C; the corresponding 2-substituted allylstannanes were isolated in moderate to good yields. The above catalytic reactions are completely regioselective and highly stereoselective. A mechanism is proposed to account for the catalytic reactions and the stereochemistry.  相似文献   

8.
The ligands D((CH(2))(2)NHPiPr(2))(2) (D = NH 1, S 2) react with (dme)NiCl(2) or (PhCN)(2)MCl(2) (M = Pd, Pt) to give complexes of the form [D((CH(2))(2)NHPiPr(2))(2)MX]X (X = Cl, I; M = Ni, Pd, Pt) which were converted to corresponding iodide derivatives by reaction with Me(3)SiI. Reaction of 1 or 2 with (COD)PdMeCl affords facile routes to [κ(3)P,N,P-NH((CH(2))(2)NHPiPr(2))(2)PdMe]Cl (8a) and [κ(3)P,S,P-S((CH(2))(2)NHPiPr(2))(2)PdMe]Cl (9a) in high yields. An alternative synthetic approach involves oxidative addition of MeI to a M(0) precursor yielding [κ(3)P,N,P-HN(CH(2)CH(2)NHPiPr(2))(2)NiMe]I (10), [κ(3)P,N,P-HN(CH(2)CH(2)NHPiPr(2))(2)MMe]I (M = Pd 8b Pt 11) and [κ(3)P,S,P-S(CH(2)CH(2)NHPiPr(2))(2)MMe]I (M = Pd 9b, Pt 12). Alternatively, use of NEt(3)HCl in place of MeI produces the species [κ(3)P,N,P-HN(CH(2)CH(2)NHPiPr(2))(2)MH]X (X = Cl, M = Ni 13a, Pd 14a, Pt 16a). The analogs containing 2; [κ(3)P,S,P-S((CH(2))(2)NHPiPr(2))(2)MH]X (M = Pd, X = PF(6)15: M = Pt, X = Br, 17a, PF(6)17b) were also prepared in yields ranging from 74-93%. In addition, aryl halide oxidative addition was also employed to prepare [κ(3)P,N,P-HN(CH(2)CH(2)NHPiPr(2))(2)MC(6)H(4)F]Cl (M = Ni 18, Pd 19) and [κ(3)P,S,P-S((CH(2))(2)NHPiPr(2))(2)Pd(C(6)H(4)F)]Cl (20). Crystal structures of 3a, 4a, 5a, 6a, 8a, 9a, 14b and 16b are reported.  相似文献   

9.
A new type of double-butterfly [[Fe(2)(mu-CO)(CO)(6)](2)(mu-SZS-mu)](2-) (3), a dianion that has two mu-CO ligands, has been synthesized from dithiol HSZSH (Z=(CH(2))(4), CH(2)(CH(2)OCH(2))(1-3)CH(2)), [Fe(3)(CO)(12)], and Et(3)N in a molar ratio of 1:2:2 at room temperature. Interestingly, the in situ reactions of dianions 3 with various electrophiles affords a series of novel linear and macrocyclic butterfly Fe/E (E=S, Se) cluster complexes. For instance, while reactions of 3 with PhC(O)Cl and Ph(2)PCl give linear clusters [[Fe(2)(mu-PhCO)(CO)(6)](2)(mu-SZS-mu)] (4 a,b: Z=CH(2)(CH(2)OCH(2))(2,3)CH(2)) and [[Fe(2)(mu-Ph(2)P)(CO)(6)](2)(mu-SZS-mu)] (5 a,b: Z=CH(2)(CH(2)OCH(2))(2,3)CH(2)), reactions with CS(2) followed by treatment with monohalides RX or dihalides X-Y-X give both linear clusters [[Fe(2)(mu-RCS(2))(CO)(6)](2)(mu-SZS-mu)] (6 a-e: Z=CH(2)(CH(2)OCH(2))(1,2)CH(2); R=Me, PhCH(2), FeCp(CO)(2)) and macrocyclic clusters [[Fe(2)(CO)(6)](2)(mu-SZS-mu)(mu-CS(2)YCS(2)-mu)] (7 a-e: Z=(CH(2))(4), CH(2)(CH(2)OCH(2))(1-3)CH(2); Y=(CH(2))(2-4), 1,3,5-Me(CH(2))(2)C(6)H(3), 1,4-(CH(2))(2)C(6)H(4)). In addition, reactions of dianions 3 with [Fe(2)(mu-S(2))(CO)(6)] followed by treatment with RX or X-Y-X give linear clusters [[[Fe(2)(CO)(6)](2)(mu-RS)(mu(4)-S)](2)(mu-SZS-mu)] (8 a-c: Z=CH(2)(CH(2)OCH(2))(1,2)CH(2); R=Me, PhCH(2)) and macrocyclic clusters [[[Fe(2)(CO)(6)](2)(mu(4)-S)](2)(mu-SYS-mu)(mu-SZS-mu)] (9 a,b: Z=CH(2)(CH(2)OCH(2))(2,3)CH(2); Y=(CH(2))(4)), and reactions with SeCl(2) afford macrocycles [[Fe(2)(CO)(6)](2)(mu(4)-Se)(mu-SZS-mu)] (10 d: Z=CH(2)(CH(2)OCH(2))(3)CH(2)) and [[[Fe(2)(CO)(6)](2)(mu(4)-Se)](2)(mu-SZS-mu)(2)] (11 a-d: Z=(CH(2))(4), CH(2)(CH(2)OCH(2))(1-3)CH(2)). Production pathways have been suggested; these involve initial nucleophilic attacks by the Fe-centered dianions 3 at the corresponding electrophiles. All the products are new and have been characterized by combustion analysis and spectroscopy, and by X-ray diffraction techniques for 6 c, 7 d, 9 b, 10 d, and 11 c in particular. X-ray diffraction analyses revealed that the double-butterfly cluster core Fe(4)S(2)Se in 10 d is severely distorted in comparison to that in 11 c. In view of the Z chains in 10 a-c being shorter than the chain in 10 d, the double cluster core Fe(4)S(2)Se in 10 a-c would be expected to be even more severely distorted, a possible reason for why 10 a-c could not be formed.  相似文献   

10.
The carbaalane halogen derivatives [(AlX)(6)(AlNMe(3))(2)(CCH(2)CH(2)SiMe(3))(6)] (X = F (9), Cl (7), Br (10), I (11)) were prepared in toluene from [(AlH)(6)(AlNMe(3))(2)(CCH(2)CH(2)SiMe(3))(6)] (6) and BF(3).OEt(2), BX(3) (X = Br, I), Me(3)SnF, and Me(3)SiX (X = Cl, Br, I), respectively. A partially halogenated product [(AlH)(2)(AlX)(4)(AlNMe(3))(2)(CCH(2)CH(2)SiMe(3))(6)] (12) (X = Cl (approximately 40%), Br (approximately 60%)) was obtained from 5 and impure BBr(3). [(AlH)(6)(AlNMe(3))(2)(CCH(2)Ph)(6)] (5) was converted to [(AlX)(6)(AlNMe(3))(2)(CCH(2)Ph)(6)] (X = F (13), Cl (14), Br (15), I (16)) using BF(3).OEt(2) and Me(3)SiX (X = Cl, Br, I), respectively. The X-ray single-crystal structures of 11.C(6)H(6), 12.3C(7)H(8), 13.6C(7)H(8), and 15.4C(7)H(8) were determined. Compounds 7 and 9-11 are soluble in benzene/toluene and could be well characterized by NMR spectroscopy and MS (EI) spectrometry. The results demonstrate the facile substitution of the hydridic hydrogen atoms in 5 and 6 by the halides with different reagents.  相似文献   

11.
Bicyclic alkenes 1a-e and 5 undergo [2 + 2] cycloaddition with a variety of alkynes PhC(triple bond)CPh, (TMS)C(triple bond)CH, HC(triple bond)C(CH(3))(2)OH, (TMS)C(triple bond)CCO(2)Et, PhC(triple bond)CCH(3), C(2)H(5)C(triple bond)CC(2)H(5), CH(3)C(triple bond)CC(3)H(7), and CH(3)C(triple bond)CC(2)H(5) in the presence of Co(PPh(3))(2)I(2), PPh(3), and Zn powder in toluene to afford the corresponding exo-cyclobutene derivatives 3a-m, 6, and 8a-g in fair to excellent yields. The yield of this cycloaddition is highly sensitive to the cobalt catalyst, solvent, ligand, and temperature used. A mechanism involving a metallacyclopentene intermediate is proposed to account for this cobalt-catalyzed cyclization.  相似文献   

12.
The reaction of 1,3,5-cis-triazidocyclohexane with the electron-rich tris(dialkylamino)phosphines P(NMe(2))(3) (1) and N(CH(2)CH(2)NMe)(3)P (2b) in acetonitrile for 3 h furnished the corresponding tris-phosphazides 1,3,5-cis-(R(3)PN(3))(3)C(6)H(9), 3a (R(3)P = 1) and 3b (R(3)P = 2b), in 90% and 92% yields, respectively. The same reaction with the relatively electron-poor tris(dialkylamino)phosphine MeC(CH(2)NMe)(3)P (4) for 2 days gave the tris-iminophosphorane, 1,3,5-cis-(R(3)PN)(3)C(6)H(9), 5a (R(3)P = 4), in 60% yield. Compound 3b is a thermally stable solid that did not lose dinitrogen when refluxed in toluene for 24 h or when heated as a neat sample at 100 degrees C /0.5 Torr for 10 h. By contrast, tris-phosphazide 3a decomposed to the tris-iminophosphorane 1,3,5-cis-(R(3)PN)(3)C(6)H(9), 5b (R(3)P = 1), in 3 h in quantitative yield upon heating to 100 degrees C in toluene. Factors influencing the formation of the phosphazides or the iminophosphoranes in these reactions are discussed. The reaction of 3b with 4 equiv of benzoic acid gave [N(CH(2)CH(2)NMe)(3)P=NH(2)]PhCO(2) ([6bH]PhCO(2)) in quantitative yield along with benzene (56% yield) and dinitrogen. The same reaction with 3a gave [(Me(2)N)(3)P=NH(2)]PhCO(2) ([7aH]PhCO(2)) (quantitative yield), benzene (15% yield), and dinitrogen(.) Treatment of [6bH]PhCO(2) with KO(t)Bu afforded N(CH(2)CH(2)NMe)(3)P=NH (6b) in 40% overall yield. Compound 6b upon treatment with PhCH(2)CH(2)Br produced [6bH]Br in 90% yield along with styrene. The new compounds were characterized by analytical and spectroscopic methods, and selected compounds (3b, 5a, and [6bH]Br) were structured by X-ray crystallography. A special feature of 3b is its capability to function as a starting material for 6b, which was not accessible by other synthetic routes.  相似文献   

13.
The labile nature of the coordinated water ligands in the organometallic aqua complex [Ru(dppe)(CO)(H(2)O)(3)][OTf](2) (1) (dppe = Ph(2)PCH(2)CH(2)PPh(2); OTf = OSO(2)CF(3)) has been investigated through substitution reactions with a range of incoming ligands. Dissolution of 1 in acetonitrile or dimethyl sulfoxide results in the facile displacement of all three waters to give [Ru(dppe)(CO)(CH(3)CN)(3)][OTf](2) (2) and [Ru(dppe)(CO)(DMSO)(3)][OTf](2) (3), respectively. Similarly, 1 reacts with Me(3)CNC to afford [Ru(dppe)(CO)(CNCMe(3))(3)][OTf](2) (4). Addition of 1 equiv of 2,2'-bipyridyl (bpy) or 4,4'-dimethyl-2,2'-bipyridyl (Me(2)bpy) to acetone/water solutions of 1 initially yields [Ru(dppe)(CO)(H(2)O)(bpy)][OTf](2) (5a) and [Ru(dppe)(CO)(H(2)O)(Me(2)bpy)][OTf](2) (6a), in which the coordinated water lies trans to CO. Compounds 5a and 6a rapidly rearrange to isomeric species (5b, 6b) in which the ligated water is trans to dppe. Further reactivity has been demonstrated for 6b, which, upon dissolution in CDCl(3), loses water and coordinates a triflate anion to afford [Ru(dppe)(CO)(OTf)(Me(2)bpy)][OTf] (7). Reaction of 1 with CH(3)CH(2)CH(2)SH gives the dinuclear bridging thiolate complex [[(dppe)Ru(CO)](2)(mu-SCH(2)CH(2)CH(3))(3)][OTf] (8). The reaction of 1 with CO in acetone/water is slow and yields the cationic hydride complex [Ru(dppe)(CO)(3)H][OTf] (9) via a water gas shift reaction. Moreover, the same mechanism can also be used to account for the previously reported synthesis of 1 upon reaction of Ru(dppe)(CO)(2)(OTf)(2) with water (Organometallics 1999, 18, 4068).  相似文献   

14.
In the presence of onium salts, at 140-170 degrees C, methyl alkyl carbonates [1a-c, ROCO2Me, R = MeO(CH2)2[O(CH2)2]n; n = 2-0, respectively] react with primary aromatic amines (XC6H4NH2, X= p-OMe, p-Me, H, p-Cl, p-CO2Me, o-Et, and 2,3-Me2C6H3NH2) to yield the corresponding N,N-dimethyl derivatives (ArNMe2) with high selectivity (up to 96%) and good isolated yields (78-95%). Phosphonium salts (e.g., Ph3PEtI and n-Bu4PBr) are particularly efficient catalysts. Overall, a solvent-free reaction is coupled with safe methylating agents (1a-c) made from nontoxic dimethyl carbonate.  相似文献   

15.
Alpha-tert-butoxystyrene [H2C=C(OBut)Ph] reacts with alpha-bromocarbonyl or alpha-bromosulfonyl compounds [R1R2C(Br)EWG; EWG =-C(O)X or -S(O2)X] to bring about replacement of the bromine atom by the phenacyl group and give R1R2C(EWG)CH2C(O)Ph. These reactions take place in refluxing benzene or cyclohexane with dilauroyl peroxide or azobis(isobutyronitrile) as initiator and proceed by a radical-chain mechanism that involves addition of the relatively electrophilic radical R1R2(EWG)C* to the styrene. This is followed by beta-scission of the derived alpha-tert-butoxybenzylic adduct radical to give But*, which then abstracts bromine from the organic halide to complete the chain. Alpha-1-adamantoxystyrene reacts similarly with R1R2C(Br)EWG, at higher temperature in refluxing octane using di-tert-amyl peroxide as initiator, and gives phenacylation products in generally higher yields than are obtained using alpha-tert-butoxystyrene. Simple iodoalkanes, which afford relatively nucleophilic alkyl radicals, can also be successfully phenacylated using alpha-1-adamantoxystyrene. O-Alkyl O-(tert-butyldimethylsilyl) ketene acetals H2C=C(OR)OTBS, in which R is a secondary or tertiary alkyl group, react in an analogous fashion with organic halides of the type R1R2C(Br)EWG to give the carboxymethylation products R1R2C(EWG)CH2CO2Me, after conversion of the first-formed silyl ester to the corresponding methyl ester. The silyl ketene acetals also undergo radical-chain reactions with electron-poor alkenes to bring about alkylation-carboxymethylation of the latter. For example, phenyl vinyl sulfone reacts with H2C=C(OBut)OTBS to afford ButCH2CH(SO2Ph)CH2CO2Me via an initial silyl ester. In a more complex chain reaction, involving rapid ring opening of the cyclopropyldimethylcarbinyl radical, the ketene acetal H2C=C(OCMe2C3H5-cyclo)OTBS reacts with two molecules of N-methyl- or N-phenyl-maleimide to bring about [3 + 2] annulation of one molecule of the maleimide, and then to link the bicyclic moiety thus formed to the second molecule of the maleimide via an alkylation-carboxymethylation reaction.  相似文献   

16.
The novel water-soluble ruthenium(II) complexes [RuCl(2)(eta(6)-arene)[P(CH(2)OH)(3)]]2a-c and [RuCl(eta(6)-arene)[P(CH(2)OH)(3)](2)][Cl]3a-c have been prepared in high yields by reaction of dimers [[Ru(eta(6)-arene)(micro-Cl)Cl](2)](arene = C(6)H(6)1a, p-cymene 1b, C(6)Me(6)1c) with two or four equivalents of P(CH(2)OH)(3), respectively. Complexes 2/3a-c are active catalysts in the redox isomerization of several allylic alcohols into the corresponding saturated carbonyl compounds under water/n-heptane biphasic conditions. Among them, the neutral derivatives [RuCl(2)(eta(6)-C(6)H(6))[P(CH(2)OH)(3)]]2a and [RuCl(2)(eta(6)-p-cymene)[P(CH(2)OH)(3)]]2b show the highest activities (TOF values up to 600 h(-1); TON values up to 782). Complexes 2/3a-c also catalyze the hydration of terminal alkynes.  相似文献   

17.
The reaction of (Me3SiNSN)2S with TeCl4 in CH2Cl2 affords Cl2TeS2N2 (1) and that of (Me3SiNSN)2Se with TeCl4 produces Cl2TeSeSN2 (2) in good yields. The products were characterized by X-ray crystallography, as well as by NMR and vibrational spectroscopy and EI mass spectrometry. The Raman spectra were assigned by utilizing DFT molecular orbital calculations. The pathway of the formation of five-membered Cl2TeESN2 rings by the reactions of (Me3SiNSN)2E with TeCl4 (E = S, Se) is discussed. The reaction of (Me3SiNSN)2Se with [PPh4]2[Pd2X6] yields [PPh4]2[Pd2(mu-Se2N2S)X4] (X = Cl, 4a; Br, 4b), the first examples of complexes of the (Se2N2S)2- ligand. In both cases, this ligand bridges the two palladium centers through the selenium atoms.  相似文献   

18.
Density functional theory (DFT) studies were performed to investigate the effect of substituents on the properties of benzdiyne derivatives. Twelve substituted benzdiynes-C(6)X(2), where X = F, Cl, Br, Me, CF(3), CN, OH, NO(2), NH(2), OMe, NMe(2), and Ph-were considered along with the unsubstituted 1,4-benzdiyne. The structures, vibrational frequencies, and IR intensities of these benzdiynes were studied with a popular three-parameter hybrid density functional (B3LYP) combined with the split-valence 6-31G(d) basis set and Dunning's correlation-consistent polarized triple-zeta (cc-pVTZ) basis set. The relative stabilities of the substituted benzdiynes were studied with the help of reaction energies of isodesmic reactions, which showed that the electron-withdrawing groups destabilized the benzdiynes more than they did the corresponding benzenes, whereas the electron-donating groups stabilized the benzdiynes more than they did their benzene counterparts. Correlation analyses revealed that field/inductive effects played a more important role than did resonance effects. The changes in atomic charges and spin populations due to the substituents were also studied. The asymmetric nu(Ctbd1;C) stretching modes obtained were close to the 1500-cm(-)(1) mark. Reinvestigation of the experimental results supported these results; a weak IR band at 1486 cm(-)(1) was assigned to this asymmetric stretching mode in C(6)(CF(3))(2) F. Some other benzdiynes also had large IR intensity values for their asymmetric nu(Ctbd1;C) vibrational modes due to the coupling with other vibrational modes. Heats of formation for the substituted benzdiynes were obtained from the reaction energies calculated at the B3LYP/cc-pVTZ level of theory.  相似文献   

19.
The reaction of Cp(2)ZrCl(2) with 2 equiv of BuLi at -78 degrees C, followed by the addition of an unsymmetrical tetra- or pentafluorophenyl substituted alkyne R(1)C[triple bond]CAr(f) (R(1), Ar(f) = (CH(2))(4)Me, p-C(6)F(4)H; Me, p-C(6)F(4)H; Ph, C(6)F(5)), resulted in regioselective couplings of these alkynes to zirconacyclopentadienes in which the Ar(f) substituents preferentially adopt the 3,4-positions (beta beta) of the zirconacyclopentadiene ring. With Cp(2)Zr(py)(Me(3)SiC[triple bond]CSiMe(3)) as the zirconocene reagent, the couplings could be carried out at room temperature; however, at higher temperatures significant quantities of the 2,4-fluoroaryl substituted (alpha beta) isomers were also formed. None of the conditions employed produced the 2,5-fluoroaryl substituted (alpha alpha) isomers. These fluoroaryl-substituted zirconacyclopentadienes were readily converted to butadienes via reactions with acids. The zirconacyclopentadiene Cp(2)ZrC(4)-2,5-Ph(2)-3,4-(C(6)F(5))(2), which resulted from the coupling of PhC[triple bond]C(C(6)F(5)), was converted to the corresponding thiophene by reaction with S(2)Cl(2), and to an arene by reaction with MeO(2)CC[triple bond]CCO(2)Me/CuCl. Mechanistic studies on zirconocene couplings of (p-CF(3)C(6)H(4))C[triple bond]C(p-MeC(6)H(4)) indicate that the observed regioselectivities are determined by an electronic factor that controls the orientation of at least one of the two alkynes as they are coupled. Additionally, these studies suggest an unsymmetrical transition state for the zirconocene coupling of alkynes, and this is supported by DFT calculations. The reaction of [(C(6)F(5))C[triple bond]CCH(2)](2)CH(2) with Cp(2)Zr(py)(Me(3)SiC[triple bond]CSiMe(3)) resulted in a zirconacyclopentadiene in which the pentafluorophenyl substituents have been forced into the 2,5-positions (alpha alpha). Zirconocene coupling of the diyne (C(6)F(5))C[triple bond]C-1,4-C(6)H(4)-C[triple bond]C(C(6)F(5)) provided a route to conjugated polymers bearing electron-withdrawing pentafluorophenyl groups.  相似文献   

20.
To model the Ti-olefin interaction in the putative [eta(5): eta(1)-C(5)R(4)SiMe(2)N(t)Bu]Ti(R')(olefin)(+) intermediates in "constrained geometry" Ti-catalyzed olefin polymerization, chelated alkoxide olefin complexes [eta(5): eta(1)-C(5)R(4)SiMe(2)N(t)Bu]Ti(OCMe(2)CH(2)CH(2)CH=CH(2))(+) have been investigated. The reaction of [eta(5): eta(1)-C(5)R(4)SiMe(2)N(t)Bu]TiMe(2) (1a,b; R = H, Me) with HOCMe(2)CH(2)CH(2)CH=CH(2) yields mixtures of [eta(5)-C(5)R(4)SiMe(2)NH(t)Bu]TiMe(2)(OCMe(2)CH(2)CH(2)CH=CH(2)) (2a,b) and [eta(5): eta(1)-C(5)R(4)SiMe(2)N(t)Bu]TiMe(OCMe(2)CH(2)CH(2)CH=CH(2)) (3a,b). The reaction of 2a/3a and 2b/3b mixtures with B(C(6)F(5))(3) yields the chelated olefin complexes [[eta(5): eta(1)-C(5)R(4)SiMe(2)N(t)Bu]Ti(OCMe(2)CH(2)CH(2)CH=CH(2))][MeB(C(6)F(5))(3)] (4a,b; 71 and 89% NMR yield). The reaction of 2b/3b with [Ph(3)C][B(C(6)F(5))(4)] yields [[eta(5): eta(1)-C(5)Me(4)SiMe(2)N(t)Bu]Ti(OCMe(2)CH(2)CH(2)CH=CH(2))][B(C(6)F(5))(4)] (5b, 88% NMR yield). NMR studies establish that 4a,b and 5b exist as mixtures of diastereomers (isomer ratios: 4a/4a', 62/38; 4b/4b', 75/25; 5b/5b', 75/25), which differ in the enantioface of the olefin that is coordinated. NMR data for these d(0) metal olefin complexes show that the olefin coordinates to Ti in an unsymmetrical fashion primarily through C(term) such that the C=C pi bond is polarized with positive charge buildup on C(int). Dynamic NMR studies show that 4b/4b' undergoes olefin face exchange by a dissociative mechanism which is accompanied by fast inversion of configuration at Ti ("O-shift") in the olefin-dissociated intermediate. The activation parameters for the conversion of 4b to 4b' (i.e., 4b/4b' face exchange) are: DeltaH = 17.2(8) kcal/mol; DeltaS = 8(1) eu. 4a/4a' also undergoes olefin face exchange but with a lower barrier (DeltaH = 12.2(9) kcal/mol; DeltaS = -2(3) eu), for the conversion of 4a to 4a'.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号