首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to investigate the isokinetic trunk and knee muscle strengths, and examine the clinical relevance of dynamic muscle strengths and gait performance in walking patients with human T-cell lymphotropic virus type 1-associated myelopathy/ tropical spastic paraparesis (HAM/TSP). Thirteen patients with HAM/TSP (8 females and 5 males, aged 38–76) and 13 sex- and age-matched healthy control subjects participated in the study. We assessed gait speed, stride length, cadence; and maximal isokinetic torque of trunk and knee extensors and flexors at 30°/s, 60°/s and 90°/s using a Biodex System 3 dynamometer. Furthermore, we calculated the isokinetic trunk extensor/flexor (E/F) and hamstrings/quadriceps (H/Q) strength ratios (parameter of the muscle strength balance about the trunk and knee joint). Compared with the age-matched controls, the patients with HAM/TSP had significantly reduced gait speed, stride length and cadence (P < 0.05). Peak torque values related to body weight (PTBW) were significantly reduced, especially for the knee flexors (P < 0.05). For the knee extensors, the PTBW values were significantly reduced at an increased angular velocity (P < 0.05). The PTBW of knee flexors was positively correlated with gait speed and cadence in the patients with HAM/TSP. The H/Q ratio but not E/F ratio was significantly decreased compared with the control. Our results indicated that the isokinetic trunk and knee muscle performance had reduced from the ambulatory stage, and suggested the deterioration in knee muscle performance to be associated with gait disturbance in walking HAM/TSP patients.  相似文献   

2.
Objective: To investigate changes in hip and knee muscle strength in patients before and after total hip arthroplasty (THA) in comparison with that in healthy adults. Methods: The study included 21 women who underwent unilateral THA (THA group) and 21 age-matched healthy women (healthy group). Maximal isometric strengths of hip flexors, extensors, and abductors, and knee extensors and flexors were measured before surgery and at 4 weeks and 6 months after surgery. Results: Before surgery, muscle strength on both sides, except for hip flexors on the uninvolved side, was significantly lower in the THA group than the corresponding muscle strength in the healthy group. Up to 6 months after THA, strength of all muscle groups on both sides was significantly improved compared with their preoperative status, although the knee extensor strength on the involved side temporarily worsened at 4 weeks. However, the strength of hip extensors and knee extensors on the involved side, and hip abductors on both sides in the THA group remained below that in the healthy group. Conclusions: Our results suggest that rehabilitation specialists should consider increasing the focus on the uninvolved side and encourage patients to continue strength training beyond 6 months after surgery.  相似文献   

3.
Vocal fold tension during phonation is generated by coordinated contraction of the intrinsic laryngeal muscles. The thyroarytenoid muscle has been found to have increased stiffness at various levels of strain when compared with other intrinsic laryngeal muscles. The objective here is to test the hypothesis that the thyroarytenoid muscle exhibits high passive tension during maximal isometric tetanic force generation, and to test the hypothesis that the thyroarytenoid maintains the ability to generate contractile force at high levels of strain more effectively than other skeletal muscle. The thyroarytenoid muscles (n=9) and digastric muscle strips (n=7) were removed from adult random-bred cats. Maximal isometric tension and passive tension at optimum length were measured from each muscle in vitro. Active and passive length-tension curves were constructed for each muscle. The contractile properties of the thyroarytenoid group were compared with those of the digastric muscle group. The thyroarytenoid muscle group required on average 140 mN of passive tension to generate maximal isometric tetanic tension. This represented 39% of the average maximal isometric tetanic tension generated by the muscles. These results were significantly higher than the digastric muscle group, which required on average 28 mN of passive tension (9% of maximal isometric tetanic tension, p<0.05). At 110% of optimum length, the thyroarytenoid muscle maintained 89.8% of maximal isometric tetanic force, whereas the digastric muscle group maintained 67.7% of maximal isometric tetanic force (p<0.05). The thyroarytenoid muscle exhibits higher passive tension when generating maximal isometric tension than the digastric muscle control group. The thyroarytenoid muscle maintains higher levels of active tension at high strain than the digastric muscle control group. We conclude that these findings are related to the ability of the thyroarytenoid muscle to function as a fine tensor of the vocal fold in a high strain environment.  相似文献   

4.
Several studies have proposed the cell membrane as the main water diffusion restricting factor in the skeletal muscle cell. We sought to establish whether a particular form of exercise training (which is likely to affect only intracellular components) could affect water diffusion. The purpose of this study is to characterise prospectively the changes in diffusion tensor imaging (DTI) eigenvalues of thigh muscle resulting from hybrid training (HYBT) in patients with non-alcoholic fatty liver disease (NAFLD). Twenty-one NAFLD patients underwent HYBT for 30 minutes per day, twice a week for 6 months. Patients were scanned using DTI of the thigh pre- and post-HYBT. Fractional anisotropy (FA), apparent diffusion coefficient (ADC), the three eigenvalues lambda 1 (λ1), λ2, λ3, and the maximal cross sectional area (CSA) were measured in bilateral thigh muscles: knee flexors (biceps femoris (BF), semitendinosus (ST), semimembranous (SM)) and knee extensors (medial vastus (MV), intermediate vastus (IV), lateral vastus (LV), and rectus femoris (RF)), and compared pre- and post-HYBT by paired t-test. Muscle strength of extensors (P < 0.01), but not flexors, increased significantly post-HYBT. For FA, ADC and eigenvalues, the overall picture was of increase. Some (P < 0.05 in λ2 and P < 0.01 in λ1) eigenvalues of flexors and all (λ1-λ3) eigenvalues of extensors increased significantly (P < 0.01) post-HYBT. HYBT increased all 3 eigenvalues. We suggest this might be caused by enlargement of muscle intracellular space.  相似文献   

5.
It has previously been observed that during isometric dorsiflexion exercise, the time course of T2-weighted signal intensity (SI) changes is spatially heterogeneous. The purpose of this study was to test the hypothesis that this spatial heterogeneity would increase at higher contraction intensities. Eight subjects performed 90-s isometric dorsiflexion contractions at 30% and 60% of maximum voluntary contraction (MVC) while T2-weighted (repetition time/echo time=4000/35 ms) images were acquired. SI was measured before, during and after the contractions in regions of interest (ROIs) in the extensor digitorum longus (EDL) muscle and the deep and superficial compartments of the tibialis anterior (D-TA and S-TA, respectively). For all ROIs at 30% MVC, SI changes were similar. The maximum postcontraction SI was greater than the SI during exercise. At 60% MVC, SI changes during contraction were greater in the S-TA than in the D-TA and EDL. For the EDL and D-TA, the maximum postcontraction SI was greater than those during exercise. For the S-TA, the maximum postcontraction change was greater than the changes at t=8, 20 and 56 s but not the end-exercise value. We conclude that spatial heterogeneity increases during more intense dorsiflexion contractions, possibly reflecting regional differences in perfusion or neural activation of the muscle.  相似文献   

6.
Objective: To estimate the minimal clinically important difference (MCID) of quadriceps and inspiratory muscle strength after a home-based pulmonary rehabilitation program (PRP) in chronic obstructive pulmonary disease (COPD). Method: Eighty-five COPD patients were included. Quadriceps maximal voluntary contraction (QMVC) was measured. We measured maximal inspiratory mouth pressure (PImax), the 6-minute walk distance (6MWD), the chronic respiratory questionnaire (CRQ) and the modified Medical Research Council dyspnoea score (mMRC). All measurements were conducted at baseline and at the end of the PRP. The MCID was calculated using anchor-based (using 6MWD, CRQ, and mMRC as possible anchor variables) and distribution-based (half standard deviation and 1.96 standard error of measurement) approaches. Changes in the five variables were compared in patients with and without changes in QMVC or PImax >MCID for each variable. Results: Sixty-nine COPD patients (age 75±6 years) were analysed. QMVC improved by 2.4 (95%CI 1.1-3.7) kgf, PImax by 5.8 (2.7-8.8) cmH2O, 6MWD by 21 (11-32) meters and CRQ by 3.9 (1.6-6.3) points. The MCID of QMVC and PImax was 3.3-7.5 kgf and 17.2-17.6 cmH2O, respectively. The MCID of QMVC (3.3 kgf) could differentiate individuals with significant improvement in 6MWD and PImax from those without. Conclusion: The MCID of QMVC (3.3 kgf) can identify a meaningful change in quadriceps muscle strength after a PRP. The MCID of PImax (17.2 cmH2O) should be used with careful consideration, because the value is estimated using distributionbased method.  相似文献   

7.
Objective: Neuromuscular electrical stimulation (NMES) has been noted as an effective pre- contraction for an increase of neural and muscle factors during twitch contractions. However, it is unknown if this intervention is effective for the rate of force development (RFD), which is the ability to increase joint torque strength as quickly as possible, during tetanic contractions. NMES can be safely used by anyone, but, the strength setting of NMES requires attention so as not to cause pain. Therefore, the purpose of this study investigated whether NMES at less painful levels was effective for RFD during tetanic contractions. We also investigated effect activation by analyzing electromyogram (EMG) and RFD for each phase. Methods: Eighteen healthy males were studied. Before and after NMES intervention at 10% or 20% maximal voluntary isometric contraction (MVIC) level (10%NMES, 20%NMES respectively), EMG activity and the initial phase (30-, 50-, 100-, and 200-msec) RFD were measured. Visual analog scale (VAS) was also measured as an indicator of pain during each NMES. Results: 20%NMES increased EMG activity and 30-, 50-, and 100-msec of RFD during MVIC, but could not improve 200 msec of RFD. However, 10%NMES could be failed to increase all phases RFD, but VAS was lower than that of 20% NMES. Conclusion: These results suggest that muscle pre-contraction using 20%NMES could induce moderate pain, but could be an effective intervention to improve RFD via neural factor activity.  相似文献   

8.

Background  

The interaction between homologous muscle representations in the right and left primary motor cortex was studied using a paired-pulse transcranial magnetic stimulation (TMS) protocol known to evoke interhemispheric inhibition (IHI). The timecourse and magnitude of IHI was studied in fifteen healthy right-handed adults at several interstimulus intervals between the conditioning stimulus and test stimulus (6, 8, 10, 12, 30, 40, 50 ms). IHI was studied in the motor dominant to non-dominant direction and vice versa while the right or left hand was at rest, performing isometric contraction of the first dorsal interosseous (FDI) muscle, and isometric contraction of the FDI muscle in the context of holding a pen.  相似文献   

9.
Using front-surface fluorimetry with fura-2-loaded smooth muscle strips, simultaneous registration of the cytosolic calcium concentration ([Ca2+]i) changes and tension development was done under the action of 40 mM KCl and the myotropic peptide 10–6 M angiotensin II. The strips were mounted vertically, connected to a force transducer that keeps a basal isometric tension of 0.5 g, and maintained in a bathing solution oxygenated at 37°C. The fiber-optic platform FluoroMax-2 accessory 1950F was used to do the remote sensing for the samples. Light from the excitation spectrometer (FluoroMax-2), alternating between 340 and 380 nm, was focused onto the fiber-optic bundle and directed to the smooth muscle strip. The fluorescence (505 nm) was collected and redirected to the emission port of the fluorimeter FluoroMax-2. The ratiometric method (R340/380) was used as an index of [Ca2+]i change during smooth muscle contraction. All data, R340/380 and tension, were recorded using a computerized data acquisition system: Soft & Solution and GRAMS/386 of Galatic Industries Corporation.  相似文献   

10.
Purpose: To investigate improvement in various impairments by exercise interventions in patients with knee osteoarthritis (OA). Methods: We collected data on randomized controlled trials (RCTs) comparing the effects of exercise intervention with those of either nonintervention or psychoeducational intervention in patients with knee OA. Data on pain, stiffness, muscle strength, range of motion, flexibility, maximal oxygen uptake, and position sense were synthesized. The Grading of Recommendations Assessment, Development, and Evaluation system was used to determine the quality of the evidence. Results: Thirty-three RCTs involving 3,192 participants were identified. Meta-analysis provided highquality evidence that exercise intervention improves maximal oxygen uptake, and moderate-quality evidence that exercise intervention also improves pain, stiffness, knee extensor and flexor muscle strength, and position sense. The evidence that exercise intervention improves knee extension and flexion range of motion was deemed as undetermined-quality. Conclusion: In patients with knee OA, improvement in pain, stiffness, muscle strength, maximal oxygen uptake, and position sense with the use of exercise intervention can be expected. Although the quality of evidence of the effect of exercise intervention on range of motion was inconclusive, exercise intervention should be recommended for patients with knee OA to improve various impairments.  相似文献   

11.
The aim of this study was to evaluate histochemically and ultrastructurally the sternomastoid muscle (SM) of adults and aged rats, employing histochemic (NADH-TR reaction) and transmission electron microscopic methods. It was used 20 rats, divided into two groups: adults (n = 10), animals with 4 months of age, and aged group (n = 10), animals with 24 months of age. Five animals from each group were anesthetized with an overdose of urethane (3 g/kg i.p.), and the muscles dissected after the samples processing for histochemical reaction (NADH-TR). Three types of fibers were identified by their metabolic characteristics: fibers with high oxidative capacity (O), intermediate oxidative capacity (OG) and low oxidative capacity (G). For transmission electron microscopic method, the animals were anesthetized and perfused by modified Karnovsky solution and the tissues were postfixed in 1% osmium tetroxide solution, dehydrated and embedded in Spurr resin. It was performed ultra-thin sections for transmission electron microscopic analysis. The SM showed heterogeneity in their composition according to the fiber types, with significant difference (p < 0.05) when comparing the fibers types between the superficial and deep regions and between the adult and aged groups. It was observe a decrease between the comparison of the total fibers density and GO fiber, and an increase of the O fiber in aged group. Ultrastructural characteristics of muscle cells in aged group showed typical morphological changes, characterizing muscular atrophy. We conclude based on physiological ageing process, changes in muscle fibers classification, and ultrastructuraly, morphological alterations on muscle cells, characterizing a muscular atrophy.  相似文献   

12.
Mitochondrial metabolism particularly oxidative phosphorylation is greatly influenced by thyroid hormones. Earlier studies have described neuromuscular symptoms as well as impaired muscle metabolism in hypothyroid and hyperthyroid patients. In this study, we intend to look in to the muscle bioenergetics including phosphocreatine recovery kinetics based oxidative metabolism in thyroid dysfunction using in vivo 31P nuclear magnetic resonance spectroscopy (MRS). 31P MRS was carried out at resting state on 32 hypothyroid, 10 hyperthyroid patients and 25 control subjects. Nine out of 32 hypothyroid patients and 17 out of 25 control subjects under went exercise protocol for oxidative metabolism study and performed plantar flexion exercise while lying supine in 1.5 T magnetic resonance scanner using custom built exercise device. MRS measurements of inorganic phosphate (Pi), phosphocreatine (PCr), phosphodiesters (PDE) and adenosine triphosphate (ATP) of the calf muscle were acquired during rest, exercise and recovery phase. PCr recovery rate constant (kPCr) and oxidative capacity were calculated by monoexponential fit of PCr versus time (t) at the beginning of recovery. During resting condition in hypothyroid patients, PCr/Pi ratio was reduced whereas PDE/ATP and Pi/ATP were increased. However, in case of hyperthyroidism, an increased PCr/Pi ratio and reduced PDE/ATP and Pi/ATP were observed. The results confirmed differential energy status of the muscle due to increased or decreased levels of thyroid hormone. Our results also demonstrate reduced oxidative metabolism in hypothyroid patients based on PCr recovery kinetics. PCr recovery kinetics study after exercise revealed decreased PCr recovery rate constant (kPCr) in hypothyroid patients compared to controls that resulted in decrease in oxidative capacity of muscle by 50% in hypothyroids. These findings are consistent with a defect of high energy phosphate mitochondrial metabolism in thyroid dysfunction.  相似文献   

13.
Muscle cells take either one of two states, namely contraction (on-state) and relaxation (off-state), under a particular physiological condition (physiological ionic strength, neutral pH and a few mM MgATP). The transition between these two states is regulated by micromolar concentrations of free Ca2+. Here we review spontaneous oscillation phenomena named SPOC. The SPOC state is attained in a contractile system of muscle (muscle model without cell membrane) as a third intermediate state. It appears either at an intermediate concentration of free Ca2+ (Ca-SPOC) or under the coexistence of MgATP with its hydrolytic products, i.e., MgADP and inorganic phosphate (Pi), where Ca2+ is not required (ADP-SPOC). We have constructed a three-dimensional Phase diagram showing three regions corresponding to three states of muscle realized under various concentrations of MgADP, Pi and free Ca2+ in the presence of MgATP; the SPOC region was sandwiched between contraction and relaxation regions. We tried to understand the mechano-chemical coupling in SPOC by explaining the mechanical properties of SPOC based on a standard kinetic scheme of actomyosin ATPase; the experimental results could be well simulated, except for the function of Pi, by assuming that a particular kinetic step regulated by Ca2+ is also regulated by the feed-back effect of the actomyosin-ADP complex. It is suggested that the SPOC state is attained by cyclic transition among the different chemical states of the actomyosin complex within each half-sarcomere, which occurs spontaneously through the mechanochemical coupling characteristic to the actomyosin complex, i.e., a mechano-enzyme.  相似文献   

14.
Active and passive characteristics of the canine cricothyroid muscle were investigated through a series of experiments conducted in vitro and compared with their counterparts in the thyroarytenoid muscle. Samples from separate portions of canine cricothyroid muscle, namely, the pars recta and pars obliqua, were dissected from dog larynges excised a few minutes before death and kept in Krebs-Ringer solution at a temperature of 37°C ± 1° C and a pH of 7.4 ± 0.05. Active tetanic stress was obtained in isometric and isotonic conditions by applying field stimulation to the muscle samples through a pair of parallel-plate platinum electrodes and using a train of square pulses of 0.1-ms duration and 85-V amplitude. Force and elongation of the samples were obtained electronically with a dual-servo system (ergometer). The results indicate that the dynamic response of the canine cricothyroid muscle is almost twice as slow as that of the thyroarytenoid muscle. The average 50% tetanic contraction times for pars recta and pars obliqua were 84 ms and 109 ms, respectively, in comparison to 50 ms for thyroarytenoid. The examination of force-velocity response of this muscle indicates a maximum shortening velocity of 2 to 3 times its length per second, which is about half of the thyroarytenoid shortening speed. The passive properties of the pars recta and pars obliqua portions are similar to those of thyroarytenoid muscle.  相似文献   

15.
利用频域近红外光谱仪和磁共振谱仪测量骨骼肌能量代谢   总被引:4,自引:1,他引:4  
利用频域近红外光谱技术(NIRS)可以实现生物组织光学参数的实时定量测量。由于生物组织的吸收系数与组织中的血红蛋白的合氧状态有关,使得频域近红外光谱技术可以用来无损测量肌肉组织中与能量代谢过程密切相关的氧气供应与消耗这个动态平衡过程。磷磁共振谱仪(31P-MRS)是无损检测骨骼肌能量代谢的金标准。为了研究细胞内pH值(pHi)对磷酸肌酸重新合成和氧合血红蛋白恢复过程的影响,作者利用频域NIRS和31P-MRS联合进行了健康成人的踝关节曲展(plantar flexion)实验。通过动脉阻断和长时间全力运动尽量降低肌肉组织细胞内pH值。对照结果表明,细胞环境酸化(pHi=6.42)明显地延长了运动停止后磷酸肌酸的重新合成和氧合血红蛋白的恢复过程。  相似文献   

16.
Spherical polyelectrolyte block copolymer micelles were investigated as a function of added NaCl salt concentration using Small-Angle Neutron Scattering (SANS) and Light Scattering (LS). The micelles are formed by the self-association of charged-neutral copolymers made of a long deuterated polyelectrolyte moiety (NaPSSd)251 and a short hydrophobic moiety (PEP)52. In presence of salt, the core shape and the aggregation number of the micelles are not affected. The hydrodynamic radius of the micelle is found to be identical to the radius of the whole micelle deduced from neutron scattering and thus the hydrodynamic radius is a valid measure of the corona thickness. At the lowest salt concentrations investigated the thickness of the corona, Rs, remains essentially constant and a contraction is observed above an added-salt concentration cs of 2×10-2 M where this crossover concentration corresponds to the average ionic strength of the free counterions in the corona. The contraction takes place while maintaining a rod-like behavior of the chains at short scale and obeys to: Rs cs-0.18. The exponent 0.18 suggests an electrostatic persistence length proportional to the Debye screening length.  相似文献   

17.
Objective: To determine the recovery process of respiratory muscle strength during 3 months following stroke, and to investigate the association of change in respiratory muscle strength and physical functions. Additionally, we compared respiratory muscle strength with those of healthy subjects. Method: In this prospective, observational study, 19 stroke patients and 19 healthy subjects were enrolled. Maximal inspiratory pressure (MIP), maximal expiratory pressure (MEP), motricity index, trunk control test, 6-minute walk test (6MWT) and functional independence measure were assessed at 1, 2, and 3 months from stroke onset in stroke patients. MIP and MEP were assessed at arbitrary times in healthy subjects. Repeated one-way analysis of variance with Bonferroni post-hoc test was used to compare the change in respiratory muscle strength in each period in stroke patients. Pearson''s correlation coefficient was computed for changes in respiratory muscle strength and physical functions. Student''s t-test was used to compare respiratory muscle strength between stroke patients at 3 months from onset and healthy subjects. Results: MIP was significantly increased at 3 months compared to 1 month. MEP was significantly increased in 2 months and 3 months, compared to 1 month. MIP changes associated with 6MWT changes. Compared to healthy subjects, MIP and MEP at 3 months were significantly lower in stroke patients. Conclusion: Respiratory muscle strength significantly increased during 3 months following stroke. However, the trend of recovery may be different. MIP changes may associated with walking endurance changes. During 3 months following stroke, respiratory muscle strength did not recover to healthy subjects.  相似文献   

18.
Background and Purpose: Clinically, disuse muscle atrophy is often seen among patients who are severely debilited and are on prolonged bed rest. Common physical therapy interventions are not successful in preventing disuse muscle atrophy early in the medical treatment of critically ill patients. In situations such as this, the use of a β2-adrenergic agonist such as clenbuterol (Cb) may be of benefit in preventing atrophy. Also, recent studies have suggested that stretching is possible in preventing disuse muscle atrophy and the decline in muscle strength. The objective of this study was to evaluate the effects of Cb medication combined with stretching (ST) on rat soleus muscle (SOL) during the progression of disuse muscle atrophy. Subjects: Thirty-five male Wistar rats were used in this study. Methods: The rats were divided into five groups: control (CON), hindlimb-unweighting (HU) only, HU+ST, HU+Cb medication, and HU+ST+Cb groups. The right SOL in stretching groups was maintained a stretched position for one hour daily by passively dorsiflexing the ankle joint under non-anesthesia. The experimental period was 2 weeks. Results: In the ST group, peak twitch tension per cross-sectional area in soleus muscle was significantly larger than in the Cb group, while there was no significant difference between the CON and ST groups. The conversion of type I to type II fibers that was observed in the Cb group was not recognized in the combined ST and Cb group. Discussion and Conclusion: Distinct effect of combined stretching and Cb medication was not recognized statistically. The results indicate that Cb affects muscle morphological characteristics while stretching affects contractile properties. These data suggest that a combined ST and Cb intervention considered the type-specificity of muscle fiber may be need more consideration for preventing disuse muscle atrophy and the decline in muscle strength.  相似文献   

19.
This study aimed to investigate the degree of regularity of surface electromyography (sEMG) signals during muscle fatigue during dynamic contractions and muscle recovery after cupping therapy. To the best of our knowledge, this is the first study assessing both muscle fatigue and muscle recovery using a nonlinear method. Twelve healthy participants were recruited to perform biceps curls at 75% of the 10 repetitions maximum under four conditions: immediately and 24 h after cupping therapy (−300 mmHg pressure), as well as after sham control (no negative pressure). Cupping therapy or sham control was assigned to each participant according to a pre-determined counter-balanced order and applied to the participant’s biceps brachii for 5 min. The degree of regularity of the sEMG signal during the first, second, and last 10 repetitions (Reps) of biceps curls was quantified using a modified sample entropy (Ems) algorithm. When exercise was performed immediately or 24 h after sham control, Ems of the sEMG signal showed a significant decrease from the first to second 10 Reps; when exercise was performed immediately after cupping therapy, Ems also showed a significant decrease from the first to second 10 Reps but its relative change was significantly smaller compared to the condition of exercise immediately after sham control. When exercise was performed 24 h after cupping therapy, Ems did not show a significant decrease, while its relative change was significantly smaller compared to the condition of exercise 24 h after sham control. These results indicated that the degree of regularity of sEMG signals quantified by Ems is capable of assessing muscle fatigue and the effect of cupping therapy. Moreover, this measure seems to be more sensitive to muscle fatigue and could yield more consistent results compared to the traditional linear measures.  相似文献   

20.
A simple and highly efficient method is developed for in situ one-step preparation of carbon co-encapsulated anatase and rutile TiO2 nanocrystals (TiO2@C) with core-shell structure for lithium-ion battery anode. The synthesis is depending on the solid-phase reaction of titanocene dichloride with ammonium persulfate in an autoclave at 200 °C for 30 min. The other three titanocene complexes including bis(cyclopentadienyl)dicarbonyl titanium, cyclopentadienyltitanium trichloride, and cyclopentadienyl(cycloheptatrienyl)titanium are used instead to comprehensively investigate the formation mechanism and to improve the microstructure of the product. The huge heat generated during the explosive reaction cleaves the cyclopentadiene ligands into small carbon fragments, which form carbon shell after oxidative dehydrogenation coating on the TiO2 nanocrystals, resulting in the formation of core-shell structure. The TiO2 nanocrystals prepared by titanocene dichloride have an equiaxed morphology with a small diameter of 10–55 nm and the median size is 30.3 nm. Hundreds of TiO2 nanocrystals are encapsulated together by the worm-like carbon shell, which is amorphous and about 20–30 nm in thickness. The content of TiO2 nanocrystals in the nanocomposite is about 31.1 wt.%. This TiO2@C anode shows stable cyclability and retains a good reversible capacity of 400 mAh g?1 after 100 cycles at a current density of about 100 mA g?1, owing to the enhanced conductivity and protection of carbon shell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号