共查询到20条相似文献,搜索用时 15 毫秒
1.
Controlled interparticle spacing through self-assembly of Au nanoparticles and poly(amidoamine) dendrimers 总被引:2,自引:0,他引:2
Control of particle-particle spacing is a key determinant of optical, electronic, and magnetic properties of nanocomposite materials. We have used poly(amidoamine) (PAMAM) dendrimers to assemble carboxylic acid-functionalized mixed monolayer protected clusters (MMPCs) through acid/base chemistry between the particle and dendrimer. Small angle X-ray scattering was then used to establish average inter-MMPC distances. Five generations of PAMAM dendrimer (0, 1, 2, 4, 6) were investigated, with a monotonic increase in interparticle spacing from 4.1 to 6.1 nm observed with increasing generation. 相似文献
2.
Controlling interparticle spacing among metal nanoparticles through metal-catalyzed decomposition of surrounding polymer matrix 总被引:1,自引:0,他引:1
Akamatsu K Shinkai H Ikeda S Adachi S Nawafune H Tomita S 《Journal of the American Chemical Society》2005,127(22):7980-7981
Systematic and reproducible control over average interparticle spacing of Pt, Ni, and Cu nanoparticles embedded in polyimide thin layers was achieved. The metal-catalyzed decomposition of polyimide matrixes surrounding metal nanoparticles causes a decrease in the composite layer thickness, while maintaining the size of nanoparticles. This ability provides an effective methodology for the preparation of metal/polymer nanocomposites with tailored microstructures and holds great promise toward the fundamental understanding of the physical interactions among metal nanoparticles. 相似文献
3.
Aqueous polyethylene oxide (PEO) solutions (2 MDa, 2-5 wt %) with or without citrate passivated Au nanoparticles (5.7×10−7 wt %) have been electrospun, producing fibres with diameters from 290 μm to 55 nm. The incorporation of nanoparticles suppresses the diameter of the fibres and increases the degree of crystallinity. Such nanocomposite fibres are of interest as self-assembled templates for bottom-up fabrication methodologies. 相似文献
4.
Liu D Gugliotti LA Wu T Dolska M Tkachenko AG Shipton MK Eaton BE Feldheim DL 《Langmuir : the ACS journal of surfaces and colloids》2006,22(13):5862-5866
RNA catalysts for the shape-controlled synthesis of Pd particles from the precursor complex trisdibenzylideneacetone dipalladium ([Pd2(DBA)3] were recently discovered in our laboratory (J. Am. Chem. Soc. 2005, 127, 17814-17818). In the work described here, RNA codes for hexagonal Pd platelets and Pd cubes were covalently immobilized on gold surfaces and evaluated for their activity toward particle synthesis. When coupled to gold via oligoethylene glycol linkers, both RNA sequences were able to catalyze the formation of Pd particles with the same shape control previously observed in solution. For low surface coverages, the average distance between RNA molecules on the surface was estimated at ca. 300 nm, yet large (e.g., dimensions of hundreds of nanometers) Pd hexagons and cubes still formed. This surprising result suggests that a single RNA molecule may be sufficient for nucleating and controlling the shapes of these particles. Finally, the use of surface-bound RNA as a tool for directing the orthogonal synthesis of materials on surfaces was demonstrated. Patterning the RNA code for Pd hexagons next to the code for Pd cubes, followed by incubation in a solution containing [Pd2(DBA)3], resulted in the spontaneous formation of spatially distinct spots of hexagonal and cubic particles. 相似文献
5.
Triazole formation via 1,3-dipolar cycloaddition, or "click" chemistry, is a powerful synthetic method for incorporating chemical functionality onto the surfaces of Au nanoparticles. To investigate the factors that govern azide/alkyne reactivity at particle surfaces, we measured the general kinetic trends for the uncatalyzed reaction using FTIR spectroscopy. This study examines the roles of ligand length, electronic substitution of the alkyne species, and solvent on the reaction under pseudo-first-order conditions. The conversion of azide to triazole is found to depend more strongly on the relative surface coverage of azide terminated alkanethiol than on the ligand length and solvent. 相似文献
6.
《中国化学快报》2022,33(9):4385-4388
The BiOCl (BOC) synthesized by the water bath heating method was treated with sodium borohydride (NaBH4) to introduce oxygen vacancies (OVs). At the same time, Au nanoparticles were loaded to prepare a series of Au/BiOCl samples with different ratios. OVs and Au nanoparticles can promote the light absorption of host photocatalyst in the visible region. The calculated work function of BiOCl and Au can verify the existence of Ohmic contact between the interface of them, which is conducive to the separation of charge carriers. Through a series of photoelectric tests, it was verified experimentally that the separation of charge carriers is indeed enhanced. The high-energy hot electrons produced by Au under the surface plasmon resonance (SPR) effect can increase the counts of electrons to participate in the CO2 reduction reaction. Especially for 1.0%-Au/BOC, the yields of CO can reach 43.16 µmol g?1 h?1, which is 6.6 times more than that of BOC. Therefore, loading precious metal on semiconductors is an effective strategy to promote the photocatalytic performance of CO2 reduction reactions. 相似文献
7.
Micellar core-embedded Au or CdS nanoparticles (NPs), in which the number of NPs was controlled by a solid type or a solution type of metallic precursors and by their amounts, were constructed using a block copolymer as a template. The location of NPs located at the micellar core was dramatically changed to the corona by the solvent-induced micellar core-corona inversion. By mixing the synthetic methods demonstrated, harmonious Au/CdS NPs with different particle sizes, numbers, and positions in the micellar core were also prepared. 相似文献
8.
Catalytic activity of supported Au nanoparticles deposited from block copolymer micelles 总被引:3,自引:0,他引:3
Jaramillo TF Baeck SH Cuenya BR McFarland EW 《Journal of the American Chemical Society》2003,125(24):7148-7149
Quasi-ordered, highly dispersed, gold nanoclusters of tightly controlled particle size were synthesized by dip-coating substrates with gold precursors encapsulated by block-copolymer micelles. By this method, gold particles (4.8 +/- 1.3 nm) were deposited on ITO-coated glass and shown to be catalytically active for electro-oxidation of carbon monoxide. XPS confirmed the catalytically active particles were predominantly Au0; however, a large fraction existed as Au3+. Whereas bulk gold is inert, these results demonstrate that catalytically active Au nanoparticles can be derived from micelle encapsulation. 相似文献
9.
Kondo T Aoshima S Hirata K Honda K Einaga Y Fujishima A Kawai T 《Langmuir : the ACS journal of surfaces and colloids》2008,24(14):7545-7548
Crystal-face-selective adsorption of Au nanoparticles (AuNPs) was achieved on polycrystalline boron-doped diamond (BDD) surface via the self-assembly method combined with a UV/ozone treatment. To the best of our knowledge, this is the first report of crystal-face-selective adsorption on an inorganic solid surface. Hydrogen-plasma-treated BDD samples and those followed by UV/ozone treatment for 2 min or longer showed almost no adsorption of AuNP after immersion in the AuNP solution prepared by the citrate reduction method. However, the samples treated by UV/ozone for 10 s showed AuNP adsorption on their (111) facets selectively after the immersion. Moreover, the sample treated with UV/ozone for 40-60 s showed AuNP adsorption on the whole surface. These results indicate that the AuNP adsorption behavior can be controlled by UV/ozone treatment time. This phenomenon was highly reproducible and was applied to a two-step adsorption method, where AuNPs from different batches were adsorbed on the (111) and (100) surface in this order. Our findings may be of great value for the fabrication of advanced nanoparticle-based functional materials via bottom-up approaches with simple macroscale procedures. 相似文献
10.
Tada H Soejima T Ito S Kobayashi H 《Journal of the American Chemical Society》2004,126(49):15952-15953
We now report photoinduced sulfur desorption from the surfaces of Au nanoparticles loaded on metal oxides. This reaction occurs in water at ordinary temperature and pressure. Nanometer-sized Au particles have been formed on the surfaces of various metal oxides by deposition-precipitation (Au/oxides). Elemental sulfur (S8) is selectively adsorbed on the Au nanoparticle surfaces of Au/oxides in an atomic state at a coverage of (theta) = 1/3 and in both atomic and molecular states at theta > 1/3. Irradiation (lambdaex > 300 nm) of the sulfur adsorbed Au/anatase TiO2 in water has led to reductive desorption of the sulfurs at room temperature. Electrochemical measurements using Au/oxides indicate that the driving force for this reaction is the photoinduced upward shift of Fermi energy of the metal oxide-supported Au nanoprticles. This study will open up a novel and wide application of heterogeneous photocatalysis for thermal catalysts. 相似文献
11.
《Electrochemistry communications》2008,10(1):71-75
Ag and Au nanoparticles were found to significantly enhance the photocatalytic activity of self-organized TiO2 nanotubular structures. The catalyst systems are demonstrated to be highly efficient for the UV-light induced photocatalytic decomposition of a model organic pollutant – Acid Orange 7. The metallic nanoparticles with a diameter of ∼10 ± 2 nm (Ag) and ∼28 ± 3 nm (Au) were attached to a nanotubular TiO2 layer that consists of individual tubes of ∼100 nm of diameter, ∼2 μm in length and approx. 15 nm of wall thickness. Both metal particle catalyst systems enhance the photocatalytic decomposition significantly more on the nanotubes support than placed on a compact TiO2 surface. 相似文献
12.
A. Tracz I. Kucinska D. Wostek-Wojciechowska J.K. Jeszka 《European Polymer Journal》2005,41(3):501-509
Crystallization of high density polyethylene (PE) from the melt on model atomically flat solid surfaces decorated with micro- and nanoparticles of gold or NaCl of different size and densities is investigated. The morphology of the contact layer of PE after its detachment from the support is studied using atomic force microscopy (AFM). It is shown that the nucleating and ordering effect of the solid on PE crystallization depends to a large extend on the nanostructure of its surface, in particular on the size of the atomically flat domains and on the presence of nanoscopic obstacles. The minimum size of the flat domain which can significantly influence the PE crystallization is estimated to be of the order of 150 nm. 相似文献
13.
《Electrochemistry communications》2007,9(7):1783-1787
Au nanoparticles dispersed over a self-organized nanotubular TiO2 matrix can be used as a highly efficient catalyst system for the electrochemical oxygen reduction reaction in aqueous solutions. For the same loading of Au nanoparticles, the nanotubular support provides a manifold increase in the reaction rate in comparison with a flat TiO2 support, or a pure Au sheet electrode. 相似文献
14.
Hickey RJ Haynes AS Kikkawa JM Park SJ 《Journal of the American Chemical Society》2011,133(5):1517-1525
We report how to control the self-assembly of magnetic nanoparticles and a prototypical amphiphilic block-copolymer composed of poly(acrylic acid) and polystyrene (PAA-b-PS). Three distinct structures were obtained by controlling the solvent-nanoparticle and polymer-nanoparticle interactions: (1) polymersomes densely packed with nanoparticles (magneto-polymersomes), (2) core-shell type polymer assemblies where nanoparticles are radially arranged at the interface between the polymer core and the shell (magneto-core shell), and (3) polymer micelles where nanoparticles are homogeneously incorporated (magneto-micelles). Importantly, we show that the incorporation of nanoparticles drastically affects the self-assembly structure of block-copolymers by modifying the relative volume ratio between the hydrophobic block and the hydrophilic block. As a consequence, the self-assembly of micelle-forming block-copolymers typically produces magneto-polymersomes instead of magneto-micelles. On the other hand, vesicle-forming polymers tend to form magneto-micelles due to the solubilization of nanoparticles in polymer assemblies. The nanoparticle-polymer interaction also controls the nanoparticle arrangement in the polymer matrix. In N,N-dimethylformamide (DMF) where PS is not well-solvated, nanoparticles segregate from PS and form unique radial assemblies. In tetrahydrofuran (THF), which is a good solvent for both nanoparticles and PS, nanoparticles are homogeneously distributed in the polymer matrix. Furthermore, we demonstrated that the morphology of nanoparticle-encapsulating polymer assemblies significantly affects their magnetic relaxation properties, emphasizing the importance of the self-assembly structure and nanoparticle arrangement as well as the size of the assemblies. 相似文献
15.
Cuenya BR Baeck SH Jaramillo TF McFarland EW 《Journal of the American Chemical Society》2003,125(42):12928-12934
Supported Au nanoclusters synthesized from diblock copolymer micelles can be reliably prepared with well-controlled sizes and dispersions. For particles with diameters between approximately 1 and 6 nm, the particle size and the support were found to strongly influence the oxygen reactivity, the formation and stabilization of a metal-oxide, and the catalytic activity for electrooxidation of carbon monoxide. The smallest particles studied (1.5 nm) were the most active for electrooxidation of CO and had the largest fraction of oxygen associated with gold at the surface as measured by the Au(3+)/Au(0) X-ray photoemission intensities. Conducting and semiconducting substrates, ITO-coated glass and TiO(2), respectively, were associated with greater stabilization of Au(3+) oxide as compared to insulating, SiO(2), substrates. 相似文献
16.
17.
A theoretical and experimental study was performed to investigate the depletion interaction between two colloidal particles next to a solid wall in a solution of nonadsorbing macromolecules. By calculating the change in free volume available to the macromolecules upon approach of the two particles, a relatively simple expression was developed for the interparticle depletion attraction in hard sphere systems as a function of the particle-particle and particle-plate spacing. Perhaps the most useful result obtained from this analysis was that the wall has no effect whenever the ratio of the particle radius to the macromolecule radius is greater than four. (In charged systems, this ratio would apply to the effective particle and macromolecule sizes.) A series of experiments was then performed in which the hydrodynamic force balance (HFB) apparatus was used to measure the shear force needed to separate a colloidal doublet consisting of two particles trapped in a secondary energy well formed by a repulsive electrostatic force and an attractive depletion force. The macromolecules used here were small, nanometer-sized spheres of either silica or polystyrene. Agreement between the measured separation forces and those predicted using the force balance model of J. Y. Walz and A. Sharma (J. Colloid Interface Sci. 168, 485 (1994)) was within a factor of 1.3 using no adjustable parameters and accounting for polydispersity and uncertainty in the macromolecule size. It is shown that this remaining discrepancy could be caused by the Brownian (stochastic) nature of the doublet breakup process. 相似文献
18.
Zirbs R Kienberger F Hinterdorfer P Binder WH 《Langmuir : the ACS journal of surfaces and colloids》2005,21(18):8414-8421
We have developed a new concept to effect nanoparticle binding on surfaces by use of directed, specific molecular interactions. Hamilton-type receptors displaying a binding strength of approximately 10(5) M(-)(1) were covalently fixed onto self-assembled monolayers via Sharpless-type "click" reactions, thus representing an efficient method to control the densities of ligands over a range from low to complete surface coverage. Au nanoparticles covered with the matching barbituric acid receptors bound with high selectivity onto this surface by a self-assembly process mediated by multiple hydrogen bonds. The binding process was investigated with atomic force microscopy. Moderate control of particle density was achieved by controlling the receptor density on the self-assembled monolayer surface. The method opens a general approach to nanoparticle and small object binding onto patterned surfaces. 相似文献
19.
20.
Wang W Liu H Liu D Xu Y Yang Y Zhou D 《Langmuir : the ACS journal of surfaces and colloids》2007,23(24):11956-11959
In this letter, we present a new design that uses single-stranded (ss) DNAs containing two stretches of cytosine (C)-rich domains for the controlled assembly of gold nanoparticles (Au NPs). We show that this assembly is driven by the formation of interparticle i-motif (four-stranded C-quadruplex) structures formed between the C-rich domains of the ssDNAs on neighboring Au NPs. The assembly happens only at slightly acidic pH conditions (pHs below the pKa of the i-motif). The assembly is reversible and can be switched by changing the solution pH. The assembly and disassembly process is accompanied by distinct color changes that are clearly visible to the naked eye. This development may have applications in the controlled assembly of reversible pH-sensitive nanostructures and/or devices. 相似文献