首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Within the scope of an anisotropic Bianchi type-VI cosmological model we have studied the evolution of the universe filled with perfect fluid and dark energy. To get the deterministic model of Universe, we assume that the shear scalar (σ) in the model is proportional to expansion scalar (?). This assumption allows only isotropic distribution of fluid. Exact solution to the corresponding equations are obtained. The EoS parameter for dark energy as well as deceleration parameter is found to be the time varying functions. Using the observational data qualitative picture of the evolution of the universe corresponding to different of its stages is given. The stability of the solutions obtained is also studied.  相似文献   

2.
The collective motion of nucleons from high-energy heavy-ion collisions is analyzed within a relativistic two-fluid model for different equations of state (EoS). As function of beam energy the theoretical slope parameter F y of the differential directed flow is in good agreement with experimental data, when calculated for the QCD-consistent EoS described by the statistical mixed-phase model. Within this model, which takes the deconfinement phase transition into account, the excitation function of the directed flow (P x ) turns out to be a smooth function in the whole range from SIS till SPS energies. This function is close to that for pure hadronic EoS and exhibits no minimum predicted earlier for a two-phase bag-model EoS. Attention is also called to a possible formation of nucleon antiflow (F y < 0) at energies ? 100 A·GeV.  相似文献   

3.
In this work, we discussed a new dark energy density model which contains one term proportional to the Hubble parameter H squared, one to the first and one to second time derivative of the Hubble parameter H based on El-Nabulsi fractional action cosmology (FAC). Some cosmological parameters, like the Hubble parameter, the Equation of State (EoS) parameter ω DE and the deceleration parameter q have been reconstructed and studied. Finally, through a test made using the squared speed of sound $v_{s}^{2}$ , the proposed reconstruction model results to be classically unstable.  相似文献   

4.
We have studied anisotropic and homogeneous Bianchi type-II cosmological model with linear equation of state (EoS) p = αρ?β, where α and β are constants, in General Relativity. In order to obtain the solutions of the field equations we have assumed the geometrical restriction that expansion scalar θ is proportional to shear scalar σ. The geometrical and physical aspects of the model are also studied.  相似文献   

5.
In this paper, author studied homogeneous and anisotropic Bianchi type-V universe filled with matter and holographic dark energy (DE) components. The exact solutions to the corresponding Einstein’s field equations are obtained for exponential and power-law volumetric expansion. The holographic dark energy (DE) EoS parameter behaves like constant, i.e. ω Λ =?1, which is mathematically equivalent to cosmological constant (Λ) for exponential expansion of the model, whereas the holographic dark energy (DE) EoS parameter behaves like quintessence for power-law expansion of the model. A correspondence between the holographic dark energy (DE) models with the quintessence dark energy (DE) is also established. Quintessence potential and dynamics of the quintessence scalar field are reconstructed, which describe accelerated expansion of the universe. The statefinder diagnostic pair {r,s} is adopted to characterize different phases of the universe.  相似文献   

6.
In this review we discuss the evolution of the universe filled with dark energy with or without perfect fluid. In doing so we consider a number of cosmological models, namely Bianchi type I, III, V, VI0, VI and FRW ones. For the anisotropic cosmological models we have used proportionality condition as an additional constrain. The exact solutions to the field equations in quadrature are found in case of a BVI model. It was found that the proportionality condition used here imposed severe restriction on the energy-momentum tensor, namely it leads to isotropic distribution of matter. Anisotropic BVI0, BV, BIII and BIDE models with variable EoS parameter ω have been investigated by using a law of variation for the Hubble parameter. In this case the matter distribution remains anisotropic, though depending on the concrete model there appear different restrictions on the components of energy-momentum tensor. That is why we need an extra assumption such as variational a law for the Hubble parameter. It is observed that, at the early stage, the EoS parameter v is positive i.e. the universe was matter dominated at the early stage but at later time, the universe is evolving with negative values, i.e., the present epoch. DE model presents the dynamics of EoS parameter ω whose range is in good agreement with the acceptable range by the recent observations. A spatially homogeneous and anisotropic locally rotationally symmetric Bianchi-I space time filled with perfect fluid and anisotropic DE possessing dynamical energy density is studied. In the derived model, the EoS parameter of DE (ω(de)) is obtained as time varying and it is evolving with negative sign which may be attributed to the current accelerated expansion of Universe. The distance modulus curve of derived model is in good agreement with SNLS type Ia supernovae for high redshift value which in turn implies that the derived model is physically realistic. A system of two fluids within the scope of a spatially flat and isotropic FRW model is studied. The role of the two fluids, either minimally or directly coupled in the evolution of the dark energy parameter, has been investigated. In doing so we have used three different ansatzs regarding the scale factor that gives rise to a variable decelerating parameter. It is observed that, in the non-interacting case, both the open and flat universes can cross the phantom region whereas in the interacting case only the open universe can cross the phantom region. The stability and acceptability of the obtained solution are also investigated.  相似文献   

7.
P Thakur 《Pramana》2017,88(3):51
Recent observational predictions suggest that our Universe is passing through an accelerating phase in the recent past. This acceleration may be realized with the negatively pressured dark energy. Generalized Chaplygin gas may be suitable to describe the evolution of the Universe as a candidate of unified dark matter energy (UDME) model. Its EoS parameters are constrained using (i) dimensionless age parameter (H 0 t 0) and (ii) the observed Hubble (H(z)?z) data (OHD) + baryon acoustic oscillation (BAO) data + cosmic microwave background (CMB) shift data + supernovae (Union2.1) data. Dimensionless age parameter puts loose bounds on the EoS parameters. Best-fit values of the EoS parameters H 0, A s and α (A s and α are defined in the energy density for generalized Chaplygin gas (GCG) and in EoS) are then determined from OHD + BAO + CMB + Union2.1 data and contours are drawn to obtain their allowed range of values. The present age of the Universe (t 0) and the present Hubble parameter (H 0) have been estimated with 1σ confidence level. Best-fit values of deceleration parameter (q), squared sound speed (\(c_{\mathrm {s}}^{2}\)) and EoS parameter (ω) of this model are then determined. It is seen that GCG satisfactorily accommodates an accelerating phase and structure formation phase.  相似文献   

8.
In this paper, we consider the New Agegraphic Dark Energy (NADE) model interacting with pressureless Dark Matter (DM) in the framework of generalized uncertainty principle. We consider different expressions of the scale factor a(t) pertaining to the emergent, the intermediate and the logamediate scenarios of the universe. We have derived the expressions for various cosmological parameters in all the three cases and plotted the equation of state (EoS) parameter ω D and squared speed of the sound $v_{s}^{2}$ to check the stability of the model in each case. We have observed that for emergent and intermediate cases, the EoS parameter has a quintom-like behavior and in the logamediate case it has quintessence-like behavior. The negative squared speed of sound in all of the three cases has indicated that the model is classically unstable for each choice of scale factor.  相似文献   

9.
Spatially Homogeneous and anisotropic Bianchi type-II space time with variable equation of state (EoS) parameter and constant deceleration parameter has been investigated in scale covariant theory of gravitation formulated by Canuto et al. (Phys. Rev. Lett. 39:429, 1977). With the help of special law of variation for Hubble’s parameter proposed by Bermann (Nuovo Cimento 74B:182, 1983) a dark energy cosmological model is obtained in this theory. We use the power law relation between scalar field ? and scale factor R to find the solutions. Some physical and kinematical properties of the model are also discussed.  相似文献   

10.
In this Letter we consider a quintom model of dark energy with non-minimal coupling between scalar field and modified gravity which is known f(R)f(R) gravity. The Lagrangian for scalar field has been inspired by tachyonic Lagrangian in string theory. Then we obtain the equation of state (EoS), and the condition required for the model parameters when ω crosses over −1. This model shows that for having ω across over −1, one doesn't need to add some higher derivative operator in the tachyonic part of action (the way that usually used to obtain crossing of the phantom divide line for EoS parameter).  相似文献   

11.
Within the scope of an anisotropic Bianchi type-V cosmological model we have studied the evolution of the universe. The assumption of a diagonal energy-momentum tensor leads to some severe restriction on the metric functions, which on its part imposes restriction on the components of the energy momentum tensor. This model allows anisotropic matter distribution. Further using the proportionality condition that relates the shear scalar (σ) in the model with the expansion scalar (?) and the variation law of Hubble parameter, connecting Hubble parameter with volume scale. Exact solution to the corresponding equations are obtained. The EoS parameter for dark energy as well as deceleration parameter is found to be the time varying functions. A qualitative picture of the evolution of the universe corresponding to different of its stages is given using the latest observational data.  相似文献   

12.
The spatially homogeneous and totally anisotropic Bianchi Type-II space-time dark energy model with EoS parameter is considered in the presence of a perfect fluid source in the framework of f(R,T) gravity proposed by Harko et al. (Phys. Rev. D, 84:024020, 2011). With the help of special law of variation for Hubble’s parameter proposed by Berman (Nuovo Cimento B, 74:182, 1983) a dark energy cosmological model is obtained in this theory. We consider f(R,T) model and investigate the modification R+f(T) in Bianchi type-II cosmology with an appropriate choice of a function f(T)=λT. We use the power law relation between average Hubble parameter H and average scale factor R to find the solution. The assumption of constant deceleration parameter leads to two models of universe, i.e. power law model and exponential model. Some physical and kinematical properties of the model are also discussed.  相似文献   

13.
A spatially homogeneous and anisotropic locally rotationally symmetric (LRS) Bianchi type-I Universe filled with matter and generalized ghost pilgrim dark energy (GGPDE) has been studied in general theory of relativity. To obtain determinate solution of the field equations we have used scalar expansion proportional to the shear scalar which leads to a relation between the metric potentials. Some well-known cosmological parameters (equation of state (EoS) parameter (ω Λ), deceleration parameter (q) and squared speed of sound \({v_{s}^{2}}\)) and planes (\(\omega _{\Lambda }-\dot {\omega }_{\Lambda }\) and statefinder) are constructed for obtained model. The discussion and significance of these parameters is totally done through pilgrim dark energy parameter (β) and cosmic time (t).  相似文献   

14.
The present work reports a Holographic reconstruction of Dirac–Born–Infeld (DBI)-essence Dark Energy (DE) in a flat FRW universe. The scale factor a(t) is chosen in power law form. We have reconstructed the scalar field and potential and subsequently the equation of state (EoS) parameter ω of the DBI-essence DE. The corresponding plots show increasing scalar field, decaying tension and decaying potential. The reconstructed EoS parameter stays below ?1, showing a phantom-like behavior. The stability of the reconstructed DBI-essence DE is investigated through squared speed of sound $v_{s}^{2}$ : its negative sign reveals that the holographically reconstructed DBI-essence is classically unstable.  相似文献   

15.
The non-perturbative effects for the Quark-Gluon Plasma (QGP) equation of state (EoS) are considered. The modifications of the bag model EoS are constructed to satisfy the main qualitative features observed for the QGP EoS in the lattice QCD calculations. A quantitative comparison with the lattice results is done for the SU(3) gluon plasma and for the QGP with dynamical quarks. Our analysis advocates a negative value of the bag constant B.  相似文献   

16.
In the present communication, we introduce a new K-prime equation of state (EoS), which can be used to understand the interior of the Earth. The newly developed EoS is found to yield similar results as given by Stacey K-prime EoS and Keane EoS, in reference to the seismological data. However, the zero pressure and infinite pressure extrapolation of higher pressure derivatives of bulk modulus are found different for different K-prime EoS.  相似文献   

17.
Some new exact solutions of Einstein’s field equations have come forth within the scope of a spatially homogeneous and anisotropic Bianchi type-III space-time filled with barotropic fluid and dark energy by considering a variable deceleration parameter. We consider the case when the dark energy is minimally coupled to the perfect fluid as well as direct interaction with it. Under the suitable condition, the anisotropic models approach to isotropic scenario. We also find that during the evolution of the universe, the equation of state (EoS) for dark energy ω (de), in both cases, tends to ?1 (cosmological constant, ω (de)=?1), by displaying various patterns as time increases, which is consistent with recent observations. The cosmic jerk parameter in our derived models are in good agreement with the recent data of astrophysical observations under appropriate condition. It is observed that the universe starts from an asymptotic Einstein static era and reaches to the ΛCDM model. So from recently developed Statefinder parameters, the behaviour of different stages of the universe has been studied. The physical and geometric properties of cosmological models are also discussed.  相似文献   

18.
Bianchi type-I dark energy model with variable equation of state (EoS) parameter is presented in a scalar-tensor theory of gravitation proposed by Brans and Dicke (Phys. Rev. 124:925, 1961). To get a determinate solution of the field equations we will take the help of special law of variation for Hubble’s parameter presented by Bermann (Nuovo Cimento B. 74:182, 1983) which yields a dark energy cosmological model with negative constant deceleration parameter. It is observed that this dark energy cosmological model always represents an accelerated and expanding universe and also consistent with the recent observations of type-Ia supernovae. Some physical and geometrical properties of the model are also discussed.  相似文献   

19.
In the derivation of Holographic Dark Energy (HDE), the area law of the black hole entropy assumes a crucial role. However, the entropy-area relation can be modified including some quantum effects, motivated from the Loop Quantum Gravity (LQG), string theory and black hole physics. In this paper, we study the cosmological implications of the interacting logarithmic entropy-corrected HDE (LECHDE) model in the framework of Brans-Dicke (BD) cosmology. As system’s infrared (IR) cut-off, we choose the average radius of Ricci scalar curvature, i.e. R ?1/2. We obtain the Equation of State (EoS) parameter ω D , the deceleration parameter q and the evolution of energy density parameter $\varOmega'_{D}$ of our model in a non-flat universe. Moreover, we study the limiting cases corresponding to our model without corrections and to the Einstein’s gravity.  相似文献   

20.
An axially symmetric Bianchi type-I space time with variable equation of state (EoS) parameter and constant deceleration parameter has been investigated in scale covariant theory of gravitation formulated by Canuto et al. (Phys. Rev. Lett. 39:429, 1977). With the help of special law of variation for Hubble’s parameter proposed by Bermann (Nuovo Cimento 74B:182, 1983) a dark energy cosmological model is obtained in this theory. Some physical and kinematical properties of the model are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号