首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 296 毫秒
1.
对分层装填的Ni2P//MoS2催化剂上的二苯并噻吩加氢脱硫反应进行了研究。结果表明,分层装填的Ni2P/Al2O3和MoS2/Al2O3催化剂在二苯并噻吩加氢脱硫反应中存在氢溢流效应,氢溢流有助于提高MoS2催化剂的活性位密度和加氢脱硫反应速率。由于Ni2P比NiSx具有更强的氢分子解离能力,Ni2P//MoS2催化体系的氢溢流因子略高于NiSx//MoS2;相对于NiSx,Ni2P对MoS2催化剂是更好的助剂。  相似文献   

2.
以正丙醇锆(n)和Zr(SO42(m)为锆源制备了Zr改性的Ni2P/ZrO2-SBA-15(n)和Ni2P/ZrO2-SBA-15(m)催化剂,并采用XRD、BET、CO吸附、XPS、NH3程序升温脱附等手段对催化剂进行了表征。以苯并呋喃(BF)为模型化合物,研究了催化剂加氢脱氧(HDO)性能。结果表明,Zr改性后,形成了新的层状结构的ZrP;Zr的引入有助于生成更多、更小粒径的Ni2P活性相,催化剂的酸强度和酸量均提高。与正丙醇锆相比,Zr(SO42为锆源能够获得比表面积大、酸性强、酸量大的催化剂,得到更多的ZrP相、更小粒径的Ni2P晶粒,暴露更多的Ni活性位点。Ni2P/ZrO2-SBA-15(n)和Ni2P/ZrO2-SBA-15(m)的BF HDO产率分别为71.5%和85.9%,较Ni2P/SBA-15分别提高了14.0%和28.4%。催化剂HDO活性、脱氧产物选择性和产率大小顺序为:Ni2P/ZrO2-SBA-15(m) > Ni2P/ZrO2-SBA-15(n) > Ni2P/SBA-15。  相似文献   

3.
设计实验证明了Ni2P和MoS2催化剂在喹啉加氢脱氮反应中存在协同效应,该协同效应能够用氢溢流遥控模型理论解释。Ni2P//MoS2的协同因子随反应温度升高而减小,并且略微大于相同反应条件下NiSx//MoS2的协同因子。Ni2P产生的溢流氢能够提高MoS2催化剂上加氢活性位的数量,促使Ni2P//MoS2催化体系增加1,2,3,4-四氢喹啉和5,6,7,8-四氢喹啉加氢生成十氢喹啉的速率,提高其脱氮活性;因此,Ni2P对MoS2催化剂是很好的助剂。  相似文献   

4.
采用程序升温还原(T)法和低温次磷酸盐法(L)制备了Y-Ni2P-T和Y-Ni2P-L催化剂,并采用XRD、BET、CO吸附、XPS等手段对催化剂进行了表征。以二苯并噻吩(DBT)为模型化合物,研究了稀土Y对不同方法制备得到的催化剂加氢脱硫(HDS)性能的影响。结果表明,对T法制备的催化剂,添加稀土Y可以抑制Ni5P4杂晶的生成,从而促进活性相Ni2P的生成;添加稀土Y能显著提高催化剂的比表面积,促进小粒径、高度分散的Ni2P晶粒的生成。Y-Ni2P-T催化剂的DBT转化率达到91.0%,比Ni2P-T催化剂提高了29%。对L法制备的催化剂,添加稀土Y能抑制其他杂晶的生成,提高了Y-Ni2P-L催化剂对联苯(BP)的选择性,但催化剂的总HDS活性比Ni2P-L催化剂略有降低。  相似文献   

5.
与助催化剂形成异质结,通过调整活性位点的电子结构和电荷输运来提高Ni2P的电催化活性是一种可行的方法。本文成功构建了一种高效的Cu3P/Ni2P异质结催化剂,其中Cu3P本身仅作为助催化剂,通过调节Ni2P的电子转移和表面重构来提高电催化活性。结果表明,在10 mA·cm-2的电流密度下,Cu3P/Ni2P具有优异的析氧反应(OER)活性,过电位为213 mV。结合实验结果和理论计算可知,Cu3P助催化剂可以有效调整Ni中心的电子结构,实现电荷重分布,降低反应能垒,从而显著提高OER催化活性。此外,Cu3P助催化剂诱导的丰富的晶界和晶格畸变促进了表面重构,形成Ni5O(OH)9,为OER提供了有效的活性位点。本工作通过引入助催化剂构建了一种新型异质结电催化剂,为优化过渡金属磷化物的电催化性能提供了一条有效途径。  相似文献   

6.
通过化学处理法在泡沫铜基底表面生成Cu(OH)2纳米线,大大增加了基底材料的表面积和导电性.采用水热法在Cu(OH)2纳米线表面制备片状Ni-CH/Cu(OH)2前驱体,对Ni-CH/Cu(OH)2前驱体进行低温磷化得到多级结构Ni2P/Cu(OH)2催化剂.通过扫描电子显微镜(SEM)、X射线光电子能谱仪(XPS)和X射线衍射仪(XRD)对催化剂的物质结构和表面形貌进行了表征.采用线性伏安法、恒电位等技术对催化剂的电化学性能进行测试.在1.0 mol·L-1 KOH碱性溶液中,当电流密度为10 mA·cm-2时,Ni2P/Cu(OH)2的析氢反应(HER)和析氧反应(OER)过电位分别为133和333 mV,且均具有较好的稳定性.将这种多级结构Ni2P/Cu(OH)2催化剂分别用作阳极和阴极进行全解水电解,电流密度达到10 ...  相似文献   

7.
采用低温热解次磷酸盐法制备了Ni2P-L、Pr-Ni2P-L和Ce-Ni2P-L催化剂,并采用XRD、H2-TPR、BET、CO吸附、XPS等手段对制备得到的催化剂进行了表征。以二苯并噻吩(DBT)为模型化合物,研究了Pr、Ce稀土元素对低温还原法制备的Ni2P-L催化剂加氢脱硫(HDS)性能的影响。结果表明,催化剂添加稀土Pr和Ce能够抑制Ni5P4和其他杂晶的生成,从而促进活性相Ni2P的生成;添加稀土能提高催化剂对联苯(BP)的选择性,但催化剂的总HDS活性略有降低。  相似文献   

8.
以MCM-41为载体,采用一种简捷、温和法制备了负载型Ni2P/MCM-41催化剂。用H2程序升温还原(H2-TPR)、X射线衍射(XRD)、N2吸附比表面积测定(BET)和X射线光电子能谱(XPS)分析对催化剂进行了表征。以1%(质量分数)二苯并噻吩(DBT)的十氢萘溶液为原料,在连续固定床反应装置上,研究了初始Ni/P物质的量比对催化剂HDS活性的影响,并考察了催化剂的稳定性。结果表明,初始Ni/P物质的量比为1/2和1/3的前驱体,在390 ℃下还原时得到单一的Ni2P相。初始Ni/P物质的量为1/2时,得到的催化剂活性最好。在反应温度340 ℃、压力3.0 MPa、氢/油体积比500、质量空速2.0 h-1时,DBT的转化率接近100%。  相似文献   

9.
采用共沉淀法制备了一系列具有类水滑石结构前驱体的Ni/CaO-Al2O3复合催化剂,考察了制备过程中焙烧温度对复合催化剂结构及性能的影响。结果表明,焙烧温度可调控活性组分Ni与载体之间的相互作用力,进而调变复合催化剂的比表面积、活性组分Ni的颗粒粒径。当焙烧温度为700 ℃时,Ni与载体之间相互作用力适宜,复合催化剂具有最大的比表面积(21.42 m2/g)和最小的Ni颗粒粒径(19.51 nm);该复合催化剂在CO2吸附强化CH4/H2O重整制氢过程中可得到98.31%的H2浓度和94.87%的CH4转化率,循环10次后,H2浓度仍能保持在97.35%以上。这是因为大的比表面积为反应提供了更多的活性位点,利于CO2吸附过程的强化,而小的Ni颗粒粒径提高了复合催化剂的抗烧结能力。  相似文献   

10.
以廉价的三苯基膦(PPh3)为磷源,以三正辛胺(TOA)为液相反应体系,溶剂热法制备了负载型Ni2P/MCM-41催化剂,并采用XRD、BET、CO吸附、XPS和TEM等手段对制备得到的催化剂进行了表征。该方法的合成温度为330 ℃,反应在常压下进行,比程序升温还原法(H2-TPR)所需的还原温度至少低300 ℃,比传统的溶剂热法合成原料更廉价。以二苯并噻吩(DBT)为模型化合物,比较了所制备的Ni2P/MCM-41催化剂与H2-TPR法制备的催化剂结构以及加氢脱硫(HDS)性能。结果表明,溶剂热法能够降低催化剂表面上P物种的集聚,从而得到较大比表面积的Ni2P催化剂(690 m2/g);促进小尺寸、高度分散的Ni2P活性相的生成;制得的催化剂的HDS活性明显高于H2-TPR法催化剂,在反应温度340 ℃,质量空速2.0 h-1,H2/油=500(体积比),3.0 MPa的条件下,Ni2P/M41-R催化剂DBT转化率达到96.8%,较H2-TPR法高10.6%。  相似文献   

11.
采用程序升温还原法和次磷酸盐歧化法制备了Ni_2P/SiO_2催化剂,结合现代仪器分析表征技术,研究了制备方法对Ni_2P/SiO_2催化剂结构和萘加氢性能的影响。结果表明,两种方法均可制备出仅含Ni_2P活性相的Ni_2P/SiO_2催化剂,在反应温度340℃、氢气压力4 MPa、空速为20.8 h~(-1)下,程序升温还原法制备的Ni_2P/SiO_2催化剂表现出更高的萘加氢活性,这主要是因为程序还原法制备的Ni_2P/SiO_2催化剂中有更多Ni_2P物种生成,提供了较多的活性位点(CO吸附量21.6μmol/g);且催化剂表面弱酸位点多,有利于芳烃吸附。当选用程序升温还原法制备Ni_2P/SiO_2催化剂时,在保证生成纯相Ni_2P的前提下,较低的Ni/P比更有利于合成高加氢活性的Ni_2P/SiO_2催化剂。  相似文献   

12.
采用水热法合成MCM-41和Zr-MCM-41,由Ni(NO_3)_2和(NH_4)2HPO_4溶液共浸渍、高温焙烧、氢气还原和钝化制备了负载型Ni_2P/Zr-M CM-41催化剂。采用XRD、TEM、氮气吸附、CO吸附、吡啶吸附红外和XPS等方法对催化剂进行了表征,并在高压反应釜中研究了其对麻风树油加氢脱氧(HDO)的催化性能。结果表明,氢气还原温度为650℃、Ni2P负载量为20%(质量分数)、Ni2P物相呈晶型时,Ni_2P/Zr-M CM-41催化剂的活性最佳;较低的Ni2P负载量有利于其在Zr-M CM-41载体表面均匀分散,而负载量高于25%(质量分数)时,活性组分少量团聚,易导致孔道堵塞。催化剂表面存在部分因钝化而形成的Ni O。对于麻风树油加氢脱氧,Ni2P负载量为20%(质量分数)Ni_2P/Zr-M CM-41表现出优异的催化性能;脱氧率高达93.90%,直链烷烃含量高达85.36%,其中柴油组分产率较高,C15~20组分占直连烷烃组分50%以上。  相似文献   

13.
采用一步法和分步法制备了钇(Y)改性的非负载型Y_x-Ni_2P催化剂(x为Y和Ni的物质的量比),并采用X射线衍射(XRD)、N_2吸附比表面积(BET)测定、X射线光电子能谱(XPS)技术对催化剂的结构和性质进行了表征。以二苯并噻吩(DBT)为模型化合物,研究了制备方法对Y_x-Ni_2P催化剂加氢脱硫(HDS)性能的影响。结果表明,Y改性可以抑制Ni5P4杂晶相的生成,促进Ni_2P活性相的生成,能显著提高催化剂的比表面积和孔容,从而有效提高磷化镍催化剂的HDS活性。Y/Ni物质的量比为0.10时,两种方法制备的催化剂均具有最高的HDS活性。与分步法相比,一步法制备得到的催化剂具有更大的比表面积和孔容,更小的表面P/Ni物质的量比,更高的CO吸附容量,暴露出更多的Ni活性位点,从而具有更高的HDS活性。在340℃,3.0 M Pa,H_2/油体积比为700,质量空速(WHSV)1.5 h~(-1)的条件下,一步法制得的Y_(0.10)-Ni_2P催化剂上DBT HDS转化率达到97.7%,与分步法制备的Y_(0.10)-Ni_2P催化剂相比(92.3%),HDS活性提高了5.4%。  相似文献   

14.
在低还原温度下程序升温还原法制备了Ni2P/MCM-41催化剂,并采用H2-TPR、TG-DTG、XRD、BET、XPS等手段对制备的催化剂进行了表征,考察了还原温度对活性相Ni2P形成以及催化剂二苯并噻吩HDS性能的影响。结果表明,在210~390℃下还原得到的催化剂活性相为单一的Ni2P相;在390℃下还原得到的催化剂具有最高的二苯并噻吩HDS活性,在反应温度340℃、反应压力3.0 MPa、氢/油体积比500、质量空速(WHSV)2.0 h-1的条件下二苯并噻吩HDS转化率达到99.0%。  相似文献   

15.
以氯化镍(Ni Cl_2·6H_2O)为镍源、次磷酸铵(NH_4H_2PO_2)为磷源、Ti-MCM-41为载体,通过程序升温还原法制备了Ni_2P/Ti-M CM-41催化剂,并采用H_2-TPR、XRD、BET、XPS、TEM等手段对其结构和性质进行了表征。以二苯并噻吩(DBT)为模型化合物,考察了还原温度对Ni_2P/Ti-M CM-41催化剂的加氢脱硫(HDS)性能的影响。结果表明,程序升温还原法制备的Ni_2P/Ti-M CM-41催化剂前驱体的还原温度为318℃,比传统程序升温还原制备的Ni_2P低200℃。在350-500℃下还原得到的催化剂活性相为单一的Ni_2P相,较低的还原温度有利于形成更小粒径的磷化镍晶粒。还原温度为400℃时,制得的Ni_2P/Ti-M CM-41催化剂比表面积高、分散性最好、表面P富集少,具有最高的HDS活性;在340℃、3.0 M Pa、H_2/油体积比500、质量空速(WHSV)为2.0 h~(-1)的条件下,二苯并噻吩HDS转化率达到99.4%。  相似文献   

16.
采用共沉淀法和原位溶胶-凝胶法制备了TiO2-Al2O3复合载体,其负载的磷化镍催化剂采用等体积浸渍法和H2原位还原法制备.通过N2吸附(BET)、X射线衍射(XRD)、透射电镜(TEM)、程序升温还原(TPR),X射线光电子能谱(XPS)和等离子体发射光谱(ICP-AES)表征技术对催化剂进行了表征,并通过喹啉的加氢脱氮反应评价了催化剂的加氢脱氮性能.结果表明,原位溶胶-凝胶法制成的复合载体基本保留了原有的γ-Al2O3的孔特征,具有较大的比表面积和较宽的孔分布,TiO2主要以表面富集的形式分散在管状的γ-Al2O3表面,其负载的磷化镍催化剂还原后所形成的活性相为Ni2P和Ni12P5;而共沉淀法制成的复合载体比表面积较小,孔径分布更加集中,TiO2趋于在块状的Al2O3表面均匀分散,其负载的磷化镍催化剂具有更好的可还原性,还原后所形成的活性相为Ni2P.不同的载体制备方法和不同的钛铝比对催化剂加氢脱氮性能影响较大,当n(Ti)/n(Al)=1/8时,共沉淀法载体负载的催化剂表现出最佳的加氢脱氮性能,在340℃,3 MPa,氢油体积比500,液时空速3 h-1的反应条件下,喹啉的脱氮率可以达到91.3%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号