首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
采用等体积浸渍法制备了一系列多孔竹炭负载的有机氮掺杂的镍钨催化剂,并将其应用于催化竹浆纤维氢解制C2,3多元醇反应。有机氮源与催化剂前驱体中Ni2+络合,高温煅烧时载体表面碳、氮和金属离子相互作用后生成一定量的C3N4、氮化物和合金物相。通过XRD、XPS和TEM等表征手段分析了催化剂Ni-W/MBC表面物理化学性质与催化活性间的关系。结果表明,除了金属镍、氧化钨物相外,表面还含有Ni-W合金(NiWO4为主);金属粒子表面包围了一层石墨化C3N4物相。XPS分析表明,有机氮源高温分解反应后形成了C3N4物相。在反应条件下,15% Ni-20% W/MBC@M-0.25催化剂得到乙二醇收率为55.8%,而未添加有机氮源的催化剂15% Ni-20% W/MBC获得的乙二醇收率仅为36.9%。催化剂稳定性实验结果表明,Ni-W合金和C3N4物相的形成显著增强了Ni-W/MB催化剂的稳定性,延长了催化剂寿命。  相似文献   

2.
La-Ba系氧化物催化剂用于甲烷氧化偶联   总被引:1,自引:0,他引:1  
以La_2O_3为基础,碱土金属作为第二组分的二元氧化物催化剂均具有较高的生成C_2活性,特别是La-Ba-O系催化剂具有优良的甲烷氧化偶联活性和稳定性,当La/Ba原子比为2.5时,C_2收率可达20.3%。第三组分的添加有助于提高C_2选择性,特别是添加碱金属,可以抑制完全氧化反应,并提高乙烯/乙烷比。在La:Ba:Na=2.5:1:0.1的催化剂上进行了500/小时的寿命实验,在整个反应期间,催化剂的活性和选择性相当稳定。X-射线物相分析表明,新鲜催化剂除有少量的碳酸钡外,主要是氧化镧和氧化钡的混合物。500小时后的物相基本上是氧化镧和碳酸钡。使用前后催化剂的比表面积及表面La和Ba的分布均无改变。较高的CH_4/O_3比对提高C_2选择性有利,当CH_4:O_2=4:1时,C_2选择性和收率分别为65.1%和19.1%。  相似文献   

3.
苯酚是一种重要的化工原料,目前苯酚的工业生产路线普遍存在工艺流程复杂、苯酚收率低和环境污染严重等问题.为实现苯酚的绿色生产,苯直接氧化制苯酚的合成路线受到各国研究者的广泛关注.在苯直接羟基化反应常用的N_2O,O_2和H_2O_2三类氧化剂中,N_2O由于来源有限,其工业应用受到极大限制;而O_2不易活化,且反应过程中常需还原剂存在,苯酚收率低;相比之下,H_2O_2作为氧化剂,其唯一副产物是H_2O,而且反应条件温和,因而以H_2O_2为氧化剂的苯羟基化反应是最具工业应用前景的苯酚合成路线.然而,由于苯分子中的C-H键非常稳定,活化能较高,同时产物苯酚的反应活性要高于反应物苯,因此,为实现苯的高效转化,积极探索研究高活性和稳定性的催化剂变得尤为重要.在我们之前的研究中发现,包含大π体系的氧化石墨烯载体有利于具有同样π共轭体系的反应物苯的吸附,进而促进苯的转化,提高反应活性.而石墨相氮化碳(g-C_3N_4)具有与氧化石墨烯类似的π共轭体系,且表面具有大量的活性位点和缺陷位,对苯环类物质具有较好的活化作用,这使其可能成为更优异的载体材料.基于此,以g-C_3N_4为载体,采用浸渍法制备了一系列不同钒含量的催化剂x V/g-C_3N_4,并通过XRD,FT-IR,TEM,TG等表征技术对催化剂进行了系统研究,以期揭示催化剂结构与反应活性之间的构效关系.XRD的表征结果表明,x V/g-C_3N_4仍具有载体g-C_3N_4的层状堆积结构,且该结构不受钒负载量变化的影响.同时,xV/g-C_3N_4中钒物种的分散度较高,未发生团聚晶化.更直观地,通过TEM观察发现,xV/g-C_3N_4中的钒物种均匀分散.FT-IR的表征结果说明钒物种与g-C_3N_4之间存在较强的相互作用.此外,通过TG表征发现,g-C_3N_4高温稳定性较好,即使焙烧温度高达550°C,其结构仍不受影响.综上所述,在x V/g-C_3N_4催化剂中,载体g-C_3N_4的结构非常稳定,经负载钒物种以及焙烧处理后仍能保持不变;而钒物种与g-C_3N_4之间存在较强的相互作用,且均匀分散,使催化剂具有较高的稳定性和较好的催化性能.在以H_2O_2为氧化剂,80 wt%醋酸溶液为溶剂的苯直接氧化制苯酚反应中,xV/g-C_3N_4催化剂显示了良好的催化活性,其中反应活性最高的是8V/g-C_3N_4催化剂,在最佳反应条件下,苯酚的收率和选择性分别达到24.4%和99.2%.同时,通过计算TOF值发现,8V/g-C_3N_4的TOF值高达13.1 h~(-1),远高于文献中报道的以C_3N_4为载体的催化剂的TOF值(0.52–0.59h~(-1)),这表明xV/g-C_3N_4催化剂具有优异的催化活性.此外,以8V/g-C_3N_4为代表又进一步考察了催化剂的稳定性,在回收重复实验中催化剂的活性保持稳定.  相似文献   

4.
Ni-Fe催化剂乙醇部分氧化制氢的研究   总被引:6,自引:0,他引:6  
研究了Ni Fe催化剂对乙醇部分氧化制氢反应,系统地考察了不同O2/C2H5OH摩尔比及反应温度下催化剂的性能.发现Ni Fe催化剂对乙醇部分氧化制氢具有较好的催化活性,其中组成为Ni50Fe50催化剂最好,最佳的反应条件是O2/C2H5OH=1.0,T=573 K.XRD谱图表明催化剂主要由尖晶石结构的铁酸盐和FeNi3合金相组成. XPS结果说明,催化剂体相以还原态FeNi3合金相为主,表面以氧化态的铁酸盐为主.稳定性考察的结果表明,催化剂经40 h反应后,对氢的选择性明显下降,此时对应的FeNi3物相衍射峰强度也明显降低,表明催化剂对H2选择性的下降与FeNi3物相的转变有关.  相似文献   

5.
以三聚氰胺为氮源,商用活性炭为研究对象,通过“浸渍吸附+高温热处理”的方式制得系列氮掺杂活性炭,并用于催化氧化合成氮甲基氧化吗啉(NMMO)。采用N2吸附/脱附、Raman、XPS等对氮掺杂活性炭的孔结构和表面性质进行了表征。结果表明:随着三聚氰胺负载量的增大,氮掺杂活性炭的表面碱性含氮官能团含量增大,进而体现出更好的催化氧化合成NMMO活性。最佳催化剂(ACO850-20N)在催化剂加量为0.02 wt%,反应温度70 ℃和反应时间4 h的工艺条件下,氮甲基吗啉的转化率和NMMO收率可达99.76%和94.31%。   相似文献   

6.
利用生物碳源在煅烧过程中产生的还原性气体还原金属氧化物来制备自还原型双功能催化剂Ni-W/SBA-15,将其直接应用于催化木质纤维素生物质氢解制备低碳多元醇,省去了催化剂还原步骤。TG和XRD结果表明,制备过程中引入的蔗糖含量为3.0 g时,催化剂中被还原的活性金属含量最高;随着Ni含量的增加,镍粒子逐渐增大;W物种为非晶态。SEM和TEM分析表明,SBA-15均匀地负载Ni、W粒子,且粒径小、分散性好。在自还原型催化剂10%Ni-15%W/SBA-15催化作用下,在反应温度为240℃、氢压为5.0 MPa和反应时间为6 h的条件下,微晶纤维素完全转化,低碳多元醇的收率达68.14%;当以小麦秸秆粉作为反应物时,转化率为85.32%,低碳多元醇总收率为44.71%。  相似文献   

7.
利用X射线光电子能谱(XPS)分析了先锋褐煤(XL)、小龙潭褐煤(XLT)和胜利褐煤(SL)及其萃取残渣表面有机氮的形态分布。结果表明,三种萃取残渣表面五种有机氮的含量分布各异,但均以吡咯型氮为主。考察了在300℃下Na OH催化的褐煤萃取残渣的超临界甲醇解反应,XL、XLT和SL萃取残渣超临界甲醇解所得石油醚可溶物的收率分别为46.0%、43.8%和47.6%(质量分数)。用傅里叶变换离子回旋共振质谱(FTICR/M S)分析石油醚可溶物中的含氮化合物(NCCs)。结果表明,NCCs主要包括N_1、N_1O_1-N_1O_5、N_2、N_2O_1-N_2O_4、N_3O_2和N_5O_2-N_5O_4类化合物。根据不饱和度和碳原子数的分布推测了NCCs的分子结构特征,表明绝大部分NCCs含羟基和羧基等含氧官能团,氮原子主要以吡咯、吡啶和氨基的形式存在于芳环结构中,以1-3个芳环的结构为主。褐煤中的-C-O-桥键的断裂是生成NCCs的一个重要路径。  相似文献   

8.
Li-Mn/WO_(3)/TiO_(2)催化剂具有良好的低温OCM催化性能,采用浸渍法制备Li-Mn/WO_(3)/TiO_(2)催化剂,并详细考察WO_(3)对催化剂物理化学性质及催化性能的影响.利用X射线衍射(XRD)、CO_(2)程序升温脱附(CO_(2)-TPD)、O_(2)程序升温脱附(O_(2)-TPD)、H_(2)程序升温还原(H_(2)-TPR)、拉曼光谱(Raman)和X射线光电子能谱(XPS)等表征技术对催化剂进行了研究,发现WO_(3)的添加提高了C_(2)选择性,并有效抑制了深度氧化.XRD与CO_(2)-TPD结果表明,WO_(3)的添加不仅有利于金红石型TiO_(2)的形成而且能够中和催化剂表面的强碱位,从而抑制了深度氧化反应.O_(2)-TPD和H_(2)-TPR结果表明,WO_(3)的添加降低了晶格氧(O^(2-))移动性,进而提高了反应的C_(2)选择性.此外,WO_(3)的添加促使了低温氧化偶联活性物种MnTiO_(3)的形成并提高了活性物种的分散性,因此提高了催化剂甲烷氧化偶联的反应活性和选择性.所有Li-Mn/x%WO_(3)/TiO_(2)催化剂中,Li-Mn/5%WO_(3)/TiO_(2)催化剂显示出最佳的OCM反应性能.在750℃,CH_(4)∶O_(2)∶N_(2)=10∶4∶5,GHSV=2280 mL·g^(-1)·h^(-1)条件下,最高的C_(2)产物收率可达16.3%.  相似文献   

9.
用水热法和共沉淀法分别制备了Nd-Co_3O_4催化剂,催化分解N_2O。其中,水热法制备的Nd-Co_3O_4催化活性较高。在不同组成的Nd-Co_3O_4中,优化出了较高活性的0.01Nd-Co_3O_4催化剂,在其表面浸渍K_2CO_3溶液制备K改性催化剂(K/Nd-Co_3O_4)。用X射线衍射(XRD)、N_2物理吸附、扫描电镜(SEM)、X射线光电子谱(XPS)、程序升温还原(H_2-TPR)、O_2程序升温脱附(O_2-TPD)等技术表征催化剂结构。结果表明,Nd-Co_3O_4和K改性催化剂均为尖晶石结构;K改性弱化了催化剂表面Co-O键,有利于表面氧的脱除,提高了催化剂活性。有氧有水气氛350℃连续反应40 h,K/Nd-Co_3O_4催化剂上的N_2O分解率超过90%,稳定性较好。  相似文献   

10.
采用不同方法制备了镍基催化剂,并考察了乙烷氧化脱氢制乙烯(ODE)的反应活性,结果表明,在3种不同制备方法的催化剂上,ODE反应的活性及产物选择性存在明显差异,浸渍法制备的催化剂性能最佳.在相同的条件下,以共浸渍法引入CeO2助剂后,N iO/-γA l2O3催化剂上的低温选择氧化活性显著提高,而目的产物C2H4的选择性变化不大.XRD,还原TG和XPS对催化剂进行表征的结果显示:反应的活性物相可能是易于还原的高度分散于催化剂表面的微晶N iO和表面尖晶石N iA l2O4物相;高分散的微晶N iO,类似于纯N iO,有利于ODE反应低温选择氧化生成目的产物C2H4,而易还原的表面尖晶石N iA l2O4物相的存在则可能是在高温下获得高选择氧化活性和选择性的主要原因之一.  相似文献   

11.
张恒  王敏  朱万诚  李言信  赵斌 《应用化学》2011,28(5):608-610
以经H2SO4处理焙烧的高岭土为载体,制备了以其负载的SO2-4/ZrO2-TiO2固体酸催化剂。 用FT-IR、XRD和NH3-TPD等测试技术表征了催化剂的微观结构及酸强度,考察了对环己酮乙二醇缩酮反应的催化活性及稳定性。 结果表明,酸化处理使高岭土表面酸量增加,但酸强度变化不大,而其负载SO2-4/ZrO2-TiO2后,经500 ℃焙烧3 h其酸量及酸强度显著升高。 环己酮用量为0.2 mol、乙二醇0.24 mol、催化剂1.2 g、带水剂环己烷15 mL,回流反应70 min后,缩酮收率可达96.8%,催化剂重复使用5次收率保持在90%以上。  相似文献   

12.
通过XRD,BET,In-situ XPS等表征技术对Cu/ZnO基甲醇裂解制氢催化剂进行 了详细的研究。XRD结果表明,Cu-Zn合金的生成是Cu/ZnO基催化剂在反应初期快速 失活的主要原因;XRD,BET和N_2O滴定实验结果表明,Ni助剂可能是通过提高 Cu~0活性物种的分散度并维持Cu~0活性物种在催化反应过程中的稳定性而使 Cu/Zn/Ni催化剂的活性及稳定性大幅度提高。In-situ XPS结果表明,Ni助剂的加 入可以诱导Cu/Zn/Ni催化剂表面在甲醇裂解反应过程中出现Cu~+,从而由 Cu~0/Cu~+共同构成催化剂的活性中心,并最终导致Cu/Zn/Ni催化剂的高活性。  相似文献   

13.
以丝光沸石分子筛(MOR)为载体,以高温生物碳源分解产物H2或CO为还原剂,采用等体积浸渍法制备自还原型双功能催化剂Ni-W/MOR,不经过还原过程直接将其应用于纤维素水相氢解制备低碳乙二醇的研究。考察了催化剂的煅烧温度、活性金属含量配比对纤维素转化率和目标产物收率的影响。结果表明,催化剂的煅烧温度在773 K为宜;XRD表征结果说明,催化剂中活性金属结晶度和晶体的种类与催化剂的配比有关;TEM照片可直观地说明,采用上述方法制备的催化剂中活性金属在载体上具有较好的分散性,粒径均小于20 nm。当Ni、W含量分别为10%和15%,煅烧温度为773 K,反应条件为513 K、5.0 M Pa、2 h时低碳多元醇总收率为56.92%,其中,乙二醇收率为52.30%。  相似文献   

14.
超小原子簇和单原子分散的活性位点(USCAD)催化剂由于其高原子利用率、高活性、高稳定性等优点,成为多相催化领域一个新兴的研究热点.USCAD通常由载体缺陷、配体和分子筛或金属有机框架的孔道和笼锚定.而制备高密度的USCAD催化剂需要载体上有足够的锚定位点.石墨相氮化碳(g-C_3N_4)具有高稳定性、高密度且均匀分散的氮原子,是制备USCAD催化剂的理想载体.但是传统热解法制备的金属/g-C_3N_4催化剂通常为块体结构,会导致金属物种被严重包覆,进而导致催化活性下降.加入固体模板可以制备得到多孔金属g-C_3N_4催化剂,但是后续复杂的除模板过程制约了其实际应用.因此,开发一种简易的无模板方法制备USCAD金属/g-C_3N_4催化剂具有重要意义.本工作开发了一种简易的硫辅助热解法制备得到蜂窝状结构的高密度(Fe载量为17.7wt%)USCADFe/g-C_3N_4催化剂.其多孔蜂窝状结构使催化剂能够暴露更多的USCADFe活性位点,增加了活性位点与反应物的可接近性.通过球差电镜和同步辐射X射线吸收技术证明了Fe物种的分散形式.硫辅助热解法只需要在热解铁盐/三聚氰胺前驱体中加入适量的硫源即可得到蜂窝状的USCAD Fe/g-C_3N_4催化剂.硫元素作为一种"牺牲载体"通过与铁离子配位促进铁物种在前驱体混合物中分散,经过高温煅烧后以SO2的形式释放而不残留在催化剂中,免除了后续的除模板过程.通过TG-MS, XPS和IR等手段证明了硫元素在热解过程中的状态变化.这种硫辅助热解法表现出非常好的普适性,改变硫源种类(硫脲、硫粉、硫氰酸铵)和铁盐种类都可以得到具有蜂窝状孔道结构的USCADFe/g-C_3N_4催化剂.将催化剂应用于高级氧化过程可以高效降解各种有机污染物(苯酚、亚甲基蓝、亚甲基橙、罗丹明B),催化剂性能远远优于文献报道的其它Fe基催化剂和传统热解法制备的Fe/g-C_3N_4催化剂.该硫辅助热解法为无模板法制备纳米多孔USCAD金属/g-C_3N_4催化剂开辟了一条简易可行的途径.  相似文献   

15.
采用水热法合成了NiWO_4纳米粒子,然后通过混合煅烧法成功地制备了负载型催化剂NiWO_4/g-C_3N_4。采用XRD、FT-IR、EDS、SEM、BET和XPS表征了NiWO_4/g-C_3N_4的形貌和结构特征。以NiWO_4/g-C_3N_4为催化剂,过氧化氢为氧化剂,1-丁基-3-甲基咪唑四氟硼酸盐离子液体([BMIM]BF4)为萃取剂。考察了催化剂的负载量,过氧化氢、离子液体和催化剂使用量,反应温度,反应时间,不同种类的含硫化合物对脱硫效果的影响。结果表明,在5 m L模拟油,0.2 m L过氧化氢,1.0 m L的[BMIM]BF4,0.03 g的NiWO_4/g-C_3N_4,反应温度为80℃,反应时间为140 min的最佳的反应条件下,脱硫率可以达到97.35%。实验表明,NiWO_4/g-C_3N_4具有很好的催化稳定性,催化剂重复使用五次后催化活性并没有明显地降低。  相似文献   

16.
我们通过原位还原的方法将吸附在g-C_3N_4表面上Cu_2+还原,制备出Cu_2O/g-C_3N_4复合材料,并利用XRD、SEM、FT-IR、XPS等分析手段表征Cu_2O/g-C_3N_4.表征结果显示:Cu元素主要以Cu_2O的形式吸附在g-C_3N_4载体上.另外,还考察了Cu_2O/g-C_3N_4在"一锅法"合成吲哚-2-甲酸乙酯的反应中的催化性能.结果表明:即使在较低的催化担载量和温和的反应条件下,Cu_2O/g-C_3N_4仍能表现出良好的催化性能并获得44.1%的收率.  相似文献   

17.
采用了不同沉淀剂(K_2CO_3、Na_2CO_3、NaOH、NaHCO_3)制备了一系列Co_3O_4氧化物催化剂.通过XRD、XPS、BET、H2-TPR、O_2-TPD表征手段,探究了催化剂物相结构和氧化还原性能对N_2O催化分解性能的影响.研究表明,以K_2CO_3为沉淀剂制备的Co_3O_4催化剂具有优越的氧化还原性能.此外,较低结晶度有助于提高催化剂的催化性能,催化剂表面物种与其沉淀剂相关:丰富的表面Co物种促进催化活性,较多氧空位有利于催化剂表面的电子传递和氧气的脱附.以K_2CO_3为沉淀剂制备的Co_3O_4催化剂表现出最佳的N_2O催化分解活性,在450℃达到90%以上的转化率.  相似文献   

18.
用一步水热、分步水热、浸渍等方法分别制备Y-Co_3O_4复合氧化物,用于催化分解N_2O的反应,其中,一步水热法制备的催化剂活性较高。再用一步水热法制备了不同Y/Co物质的量比的Y-Co_3O_4复合氧化物,在优化出的催化剂(0. 03YCo_3O_4)表面浸渍K_2CO_3溶液,制备K改性催化剂(0. 02K/0. 03Y-Co_3O_4)。用X射线衍射(XRD)、N_2物理吸附、H_2程序升温还原(H_2-TPR)、O_2程序升温脱附(O_2-TPD)、扫描电镜(SEM)、X射线光电子谱(XPS)等技术表征催化剂结构。研究发现,Co_3O_4和Y-Co_3O_4同为尖晶石结构,但Y-Co_3O_4的催化活性显著高于Co_3O_4。K改性增加了催化剂表面的活性位(Co~(2+)),还有利于吸附氧的脱除,从而提高了催化剂活性。在无氧无水、有氧无水、有氧有水气氛中,K改性催化剂上的N_2O全分解温度分别为325、350、375℃,催化剂活性较高。有氧有水气氛350℃连续反应50 h,K改性催化剂上N_2O分解率保持90%以上,稳定性较高。研究发现,Y-Co_3O_4及K改性催化剂上N_2O分解反应的Ea和lnA之间存在动力学补偿效应。  相似文献   

19.
石墨相的氮化碳(g-C_3N_4)已被广泛用于光催化、水分解、光子检测器、电池、以及光电阴极.与其他光催化材料相比,g-C_3N_4具有价格低廉,易制备,无毒无污染等优点.此外,C_3N_4具有适宜的带隙(2.7 eV),能有效地吸收可见光.有关C_3N_4的光催化研究很多,但是其降解效率受限于电子空穴对的快速复合.因此,为了提高C_3N_4光催化反应效率,需要对其进行改性.磁铁矿(Fe_3O_4)广泛用于光催化和芬顿/光-芬顿反应.Fe_3O_4晶体具有反式尖晶石结构,其中Fe~(2+)和Fe~(3+)同时存在.研究表明,磁铁矿在酸性条件下催化效果显著,然而,它的比表面积小,随着反应时间的推移,铁离子会溶出,不利于有机物降解反应.因此,近来许多研究着重于磁铁矿复合物的制备,以提高磁铁矿的稳定性及催化性能.本文通过惰性氛围高温焙烧三聚氰胺制备了g-C_3N_4,再通过氯化铁和乙酸钠在乙醇中于180°C溶剂热反应,制备Fe_3O_4纳米粒子,最后通过静电自组装过程制备出Fe_3O_4/g-C_3N_4纳米复合材料.利用X射线衍射(XRD),扫描电子显微镜(SEM)及X射线光电子光谱(XPS)等手段验证其组成和结构.XRD结果表明,Fe_3O_4/g-C_3N_4复合材料中可以清晰看到Fe_3O_4和g-C_3N_4的衍射峰,说明这两种材料的晶相得以保持.SEM和TEM结果表明,Fe_3O_4纳米颗粒很好地附着在g-C_3N_4薄片上.XPS结果表明,氮化碳中存在典型的三种N峰;此外还存在铁的两种价态.光-芬顿活性测试中,相同条件下,Fe_3O_4/g-C_3N_4在60 min内将罗丹明B(RhB)几乎降解完全,而单组份的Fe_3O_4或g-C_3N_4对RhB的降解小于50%.可见,复合后的Fe_3O_4/g-C_3N_4光催化性能得到很大提升.单g-C_3N_4本身由于快速的电子空穴复合以及对双氧水的弱亲和力,因而对Rh B降解效果差.单独的Fe_3O_4由于在中性或者碱性条件下反而会抑制光催化芬顿活性.对于制备的Fe_3O_4/g-C_3N_4复合材料,具有以下优点:(1)电子在Fe~(3+)和g-C_3N_4的LUMO轨道上的转移降低了电子-空穴对的复合;(2)Fe_3O_4均匀分布在g-C_3N_4上,对于H_2O_2的吸附提供了有利的高比表面积;(3)Fe_3O_4和g-C_3N_4之间的界面相互作用使得Fe_3O_4的稳定性提高.通过降解RhB的动力学研究,得到反应速率为0.02 min~(–1),属准一级反应.分析检测结果表明,光-芬顿反应后,RhB分子被彻底矿化降解,没有中间产物生成,最终降解为CO_2和水.同时,通过对辣根过氧化物酶(HRP)模拟催化进行测试,以3,3',5,5'-四甲基联苯胺盐酸盐(TMB)作为基质,同时添加双氧水和Fe_3O_4/g-C_3N_4,在pH值为4.5条件下,TMB可以被有效氧化.实验表明,Fe_3O_4/g-C_3N_4添加量为25 mg/ml时,对TMB氧化性能最佳.复合催化剂还用于多巴胺的催化氧化反应.结果表明,多巴胺的氧化反应速率常数为1.21 min~(–1),属一级动力学反应.总之,复合材料提高了Rh B的光催化降解活性和稳定性;对TMB和HRP亲和性好,表现出高的类过氧化酶反应活性;有效的多巴胺氧化反应表明其有望用于生物基氧化反应中.实验结果表明,本文发展的Fe_3O_4/g-C_3N_4复合材料为其他类型复合材料的制备与应用提供了新的思路.  相似文献   

20.
本研究以三聚氰胺作为碳源和氮源,经高温热解制得具有核壳结构氮掺杂碳(CN)包覆的Cu-ZrO2(CZ)纳米催化剂(CZ@CN催化剂),并研究了铜与三聚氰胺不同物质的量比对催化剂的影响.采用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)、X射线光电子能谱(XPS)、N2物理吸脱附测试(BET)、H2程序升温还原(H2-TPR)等表征技术分析了催化剂的形貌结构及物化性质.考察了催化剂用于二乙醇胺脱氢的催化性能.在铜与三聚氰胺物质的量比为4:1时,制备的CZ@CN催化剂催化活性最高,亚氨基二乙酸钠收率达92.8%,与普通CZ催化剂相比,反应时间缩短了40%,催化剂重复使用8次后收率依然达到88.4%.结果表明,适度的CN层的引入使催化剂具有更多的Lewis碱性位,在脱氢反应中有利于羟基的活化及氢的转移.同时CN层还可以稳定铜纳米颗粒,提高催化剂稳定性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号