共查询到17条相似文献,搜索用时 64 毫秒
1.
采用ZnS-Sn-CuS作为靶材,利用磁控溅射技术制备了Cu2ZnSnS4 (CZST)薄膜材料及太阳电池,重点研究了不同硫化温度对CZTS薄膜质量及太阳电池性能的影响.利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、能谱仪(EDS)、显微拉曼光谱仪(Raman)和紫外可见分光光度计(UV-Vis)分别表征了不同硫化温度下制备的CZTS薄膜的晶相结构、表面形貌、化学组分、相的纯度和光学性能.结果表明:在580℃下所制备的CZTS薄膜光滑致密、结晶质量好,同时化学组分属于贫铜富锌,而且无其他二次相,禁带宽度约为1.5 eV.符合高效率太阳电池吸收层的要求.将CZTS吸收层按照SLG/Mo/CZTS/CdS/i-ZnO/ITO/ Al的结构制备成面积为0.12 cm2的电池并进行Ⅰ-Ⅴ测试.测试结果表明,在580℃硫化后制备的CZTS薄膜太阳电池具有最高的转换效率为3.59;. 相似文献
2.
无镉材料Zn(O,S)因其带隙宽且可调节、无毒无害等优点被作为缓冲层材料重点研究,通过化学水浴法制备Zn(O,S)薄膜,研究了沉积时间的不同(20~35 min)对Zn(O,S)薄膜的成分、结构特性、光学性能及形貌的影响.通过XRD测试可知,水浴法制备的Zn(O,S)薄膜为非晶态.通过透反射谱测试可知,薄膜的光学透过率较高(>80;).通过表面形貌测试可知,30 min时Zn(O,S)薄膜为致密均匀的小颗粒.将Zn(O,S)薄膜应用在CZTSe电池中,在30 min时获得较高器件转换效率5.37;. 相似文献
3.
本文系统研究了Cu(In,Ga)Se2(CIGS)薄膜太阳电池在入射光强为10~100 mW/cm2范围内的性能参数.结果表明,随光强的减弱,CIGS电池的转换效率、填充因子、短路电流密度和开路电压等性能参数逐步衰减;电池参数与光强的依赖关系可明显划分为两个阶段:光强高于75 mW/cm2时,电池性能变化不大;当光强低于70 mW/cm2时,电池性能衰减明显.这是由于随着光强的降低,RS(串联电阻)值和RSH(并联电阻)值都在升高.其中,RSH值的增大使得CIGS电池的弱光特性变好,但较小的RSH值并不能弥补RS所导致电池性能的衰退.最后,发现高Ga含量的CIGS薄膜电池(8.7;)比低Ga含量(6.9;)的电池弱光特性好. 相似文献
4.
5.
利用共蒸发三步法制备了Cu(In,Ga)Se2(CIGS)薄膜,并通过调整制备工艺中的一、三步的金属镓(Ga)的温度,改变Ga含量的梯度分布,研究不同梯度分布对CIGS薄膜及电池性能的影响.从而优化了电池带隙梯度分布,使电池的开路电压Voc在提高的同时,最大程度的减小了Jsc的损失.优化后薄膜表面的结晶情况得到改善,电池的结界面和二极管特性也得到相应的提高.量子效率测试发现,优化后的CIGS太阳电池在较长波段中(520~1100nm)的光子吸收损失大大减小. 相似文献
6.
本文使用气相输运沉积的方式制备了硒化锑(Sb2Se3)薄膜太阳电池,并采用氯化铯(CsCl2)溶液对器件上界面进行处理,同时对薄膜和器件进行了一系列表征。研究发现,CsCl2溶液的背接触处理不仅可以提高器件的载流子收集以及降低上界面复合,还可以优化薄膜的结晶性、表面粗糙度和光电性能。基于FTO/CdS/Sb2Se3/CsCl2/Au的器件结构,得到了转换效率为6.32%的高效Sb2Se3薄膜太阳电池,比基础器件效率提升了12%。本文的工作对Sb2Se3薄膜太阳电池未来的研究有一定的指导作用,其他同类型半导体光伏器件也可借鉴。 相似文献
7.
Cu(In,Ga)Se2薄膜太阳电池二极管特性的研究 总被引:1,自引:1,他引:0
本文采用线性拟合光态和暗态J-V(电流-电压)曲线的方法计算了不同效率的Cu(In,Ga)Se2(CIGS)薄膜太阳电池的二极管性能参数.在一定范围内,CIGS薄膜电池的二极管品质因子A和反向饱和电流J0值越小,电池的转换效率越高,这说明CIGS电池的复合主要发生在PN结区内.量子效率分析表明,不同效率的CIGS电池在短波区(λ<520 nm)的光谱响应相差不大,而在长波区(520~1100 nm),低效率电池存在很大的吸收,这是由低质量的CIGS吸收层造成的.这进一步验证了光-暗态J-V曲线的分析结果,即高质量的吸收层是制备CIGS电池的关键. 相似文献
8.
Sb2(S1-xSex)3(0≤x≤1)化合物是重要的半导体材料,主要包括Sb2Se3、Sb2Se3及Sb2(S,Se)3三种材料,元素储量丰富且环境友好、组分简单、价格低廉,同时其禁带宽度合适(1.1~1.8 eV),吸光系数大(>105 cm-1),非常适合用作新型低成本低毒的薄膜太阳能电池的吸收层,有可能成为下一个研究热点.本文综述了近几年来Sb2Se3、Sb2Se3及Sb2(S,Se)3薄膜太阳能电池的研究进展,并对其发展趋势进行了展望. 相似文献
9.
采用磁控共溅射沉积法,以氧化锌和硫化锌为靶材,在不同衬底温度下制备了Zn(O,S)薄膜.采用X射线衍射仪、原子力显微镜、紫外-可见-近红外分光光度计、霍尔测试仪和拉曼光谱测试仪对Zn(O,S)薄膜进行了结构和光电特性研究.结果表明:Zn(O,S)薄膜具有六方纤锌矿结构,属于二模混晶;在可见-近红外波段的吸收率小于5;;其为N型半导体,电学特性随衬底温度的变化而变化;衬底温度为200℃时制备的厚度为167 nm的Zn(O,S)薄膜的载流子浓度达到8.82×1019 cm-3,迁移率为19.3 cm2/V·s,表面呈金字塔结构. 相似文献
10.
由于Cu元素的含量对Cu2ZnSnSe4(CZTSe)化合物的薄膜性质及电池性能都有影响,本文主要研究了不同铜蒸发温度对CZTSe薄膜性质及电池性能的影响.研究表明:当铜蒸发温度较低时(1400 ℃),CZTSe薄膜中含有SnSe相,同时薄膜呈N型;随着铜蒸发温度的提高,CZTSe薄膜的结晶质量明显提升.但当铜蒸发温度过高时(1500 ℃),薄膜中含有CuxSey相.二次相SnSe与CuxSey的存在都会使电池失效.最终通过优化铜的蒸发温度,在较合适的1450 ℃ 铜蒸发温度条件下制备出效率为2.63;(有效面积0.34 cm2)的CZTSe太阳电池. 相似文献
11.
低成本薄膜太阳电池在光伏领域有着很大的发展空间和应用前景,铜锌锡硫硒(Cu2ZnSn(S,Se)4,CZTSSe)薄膜太阳电池具有组成元素丰富、无毒、光吸收系数高、光学带隙合适、理论光电转换效率高和稳定性好等优点,是一种具有大规模应用潜力的新型薄膜太阳电池。本文将对铜锌锡硫硒薄膜太阳电池的发展、制备方法和研究现状进行介绍,并对报道过的铜锌锡硫硒薄膜太阳电池进行对比分析,概括目前铜锌锡硫硒薄膜太阳电池的成果及现状,最后阐明目前铜锌锡硫硒薄膜太阳电池所存在的问题并对其未来进行展望。 相似文献
12.
本文详细介绍了电沉积制备Cu(In,Ga)Se2(CIGS)薄膜的原理.电解液由CuCl2,InCl3,GaCl3和柠檬酸钠溶液组成.溶流组成通过改变柠檬酸钠的浓度,铟和镓的沉积电位接近或等于铜和硒的沉积电位.Cu(In,Ga)Se2薄膜的性能研究分别采用扫描电镜自带能谱仪(EDS)、X射线衍射(XRD)和扫描电镜分析Cu(In,Ga)Se2薄膜的化学组成、晶体结构和表面形貌.结果表明当柠檬酸钠浓度为1.0M时,所制备的Cu(In,Ga)Se2薄膜为单一的黄铜矿结构,晶粒大小均匀. 相似文献
13.
Cu(In,Ga)Se2薄膜电沉积制备及性能研究 总被引:1,自引:0,他引:1
采用Mo/钠钙玻璃衬底作为阴极,饱和甘汞电极(SCE)为参比电极,大面积的铂网电极作为阳极的三电极体系,以氯化铜,三氯化铟,三氯化镓和亚硒酸的水溶液为电解液,利用电沉积技术制备出黄铜矿结构Cu(In,Ga)Se2多晶薄膜.研究了不同热处理温度对CIGS多晶薄膜材料的组成、结构和表面形貌的影响以及薄膜的光电学性能.实验结果表明当热处理温度为450℃时,所制备的Cu(In,Ga)Se2薄膜的化学组成接近理想的化学计量比,薄膜具有黄铜矿结构,颗粒均匀,致密性较好,在室温下禁带宽度为1.43 eV,具有高的吸收系数. 相似文献
14.
本文采用二步法制备Cu2ZnSnS4(CZTS)薄膜,首先通过真空热蒸发制备CuZnSn (CZT)预制层,其衬底加热温度分别为20℃、50℃、75℃和100℃,然后对所制备的CZT预制层在400℃下硫化60 min,从而制备出CZTS薄膜.利用XRD、Raman、SEM、反射谱和透射谱对所制备的CZTS薄膜进行了表征,实验结果表明,预制层衬底加热温度对CZTS薄膜结构与光学特性有很大影响,在衬底加热50℃时制备预制层硫化后所得CZTS薄膜具有高的结晶度、致密均匀的薄膜表面和最佳1.5 eV光学带隙.此外,与衬底未加热制备预制层在500℃和90 min最佳硫化条件下所制备的高纯CZTS薄膜相比,在50℃预制层衬底加热条件下所制备CZTS薄膜具有更好地结晶质量、更低的硫化温度和更短的硫化时间,这种现象表明衬底加热制备金属预制层利于更高品质CZTS薄膜的制备,可有效的降低硫化温度和缩短硫化时间,当前的研究结果为在低温下实现高质量CZTS薄膜的制备提供了一种有效的途径. 相似文献
15.
16.
采用等离子体增强化学气相沉积(PECVD)技术在1.1 m×1.3m的大面积玻璃衬底上制备非晶硅锗(a-SiGe)薄膜和太阳能电池.系统研究了锗烷流量比(RGe)、氢气流量比(RH)、沉积功率和压强对a-SiGe薄膜光学带隙以及沉积速率的影响;分析了具有不同RGe的本征层对a-SiGe单结电池的影响;通过调节沉积参数制备出具有合适本征层带隙的高质量a-SiGe单结电池,实现在800 nm波长处的量子效率达到18.9;,同时填充因子(FF)也达到0.62. 相似文献