首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction of UO(2)(NO(3))(2).6H(2)O with Cs(2)CO(3) or CsCl, H(3)PO(4), and Ga(2)O(3) under mild hydrothermal conditions results in the formation of Cs(4)[(UO(2))(2)(GaOH)(2)(PO(4))(4)].H(2)O (UGaP-1) or Cs[UO(2)Ga(PO(4))(2)] (UGaP-2). The structure of UGaP-1 was solved from a twinned crystal revealing a three-dimensional framework structure consisting of one-dimensional (1)(infinity)[Ga(OH)(PO(4))(2)](4-) chains composed of corner-sharing GaO(6) octahedra and bridging PO(4) tetrahedra that extend along the c axis. The phosphate anions bind the UO(2)(2+) cations to form UO(7) pentagonal bipyramids. The UO(7) moieties edge-share to create dimers that link the gallium phosphate substructure into a three-dimensional (3)(infinity)[(UO(2))(2)(GaOH)(2)(PO(4))(4)](4-) anionic lattice that has intersecting channels running down the b and c axes. Cs(+) cations and water molecules occupy these channels. The structure of UGaP-2 is also three-dimensional and contains one-dimensional (1)(infinity)[Ga(PO(4))(2)](3-) gallium phosphate chains that extend down the a axis. These chains are formed from fused eight-membered rings of corner-sharing GaO(4) and PO(4) tetrahedra. The chains are in turn linked together into a three-dimensional (3)(infinity)[UO(2)Ga(PO(4))(2)](1-) framework by edge-sharing UO(7) dimers as occurs in UGaP-1. There are channels that run down the a and b axes through the framework. These channels contain the Cs(+) cations. Ion-exchange studies indicate that the Cs(+) cations in UGaP-1 and UGaP-2 can be exchanged for Ca(2+) and Ba(2+). Crystallographic data: UGaP-1, monoclinic, space group P2(1)/c, a = 18.872(1), b = 9.5105(7), c = 14.007(1) A, beta = 109.65(3)(o) , Z = 4 (T = 295 K); UGaP-2, triclinic, space group P, a = 7.7765(6), b = 8.5043(7), c = 8.9115(7) A, alpha = 66.642(1)(o), beta = 70.563(1)(o), gamma = 84.003(2)(o), Z = 2 (T = 193 K).  相似文献   

2.
The mixed gallium transition-metal complexes [FeCl[Ga(2)((t)Bu)(4)(neol)(2)]] (1) and [M[Ga(2)((t)Bu)(4)(neol)(2)]], M = Co (2), Ni (3), Cu (4), have been prepared by the reaction of [Ga(2)((t)Bu)(4)(neol-H)(2)] (neol-H(2) = 2,2-dimethyl-propane-1,3-diol) with the appropriate metal halide and Proton Sponge. Compounds 1-4 have been characterized by NMR (3), UV/vis, and IR spectroscopy and magnetic susceptibility (solution and solid state), and their molecular structures have been confirmed by X-ray crystallography. The molecular structure of compounds 1-4 consists of a tetracyclic core formed from two four-membered and two six-membered rings. The central metal atom adopts a square pyramidal (1) or square planar (2-4) geometry. The magnetic susceptibilities for 1, 2, and 4 are as expected for strong ligand field environments. On the basis of spectroscopic and structural data, the [Ga(2)((t)Bu)(4)(neol)(2)](2-) ligand appears to be more flexible than other chelating ligands; this is proposed to be due to the flexibility in the O-Ga-O bond angle.  相似文献   

3.
Exploiting the ability of the [M(SC[O]Ph)(4)](-) anion to behave like an anionic metalloligand, we have synthesized [Li[Ga(SC[O]Ph)(4)]] (1), [Li[In(SC[O]Ph)(4)]] (2), [Na[Ga(SC[O]Ph)(4)]] (3), [Na(MeCN)[In(SC[O]Ph)(4)]] (4), [K[Ga(SC[O]Ph)(4)]] (5), and [K(MeCN)(2)[In(SC[O]Ph)(4)]] (6) by reacting MX(3) and PhC[O]S(-)A(+) (M = Ga(III) and In(III); X = Cl(-) and NO(3)(-); and A = Li(I), Na(I), and K(I)) in the molar ratio 1:4. The structures of 2, 4, and 6 determined by X-ray crystallography indicate that they have a one-dimensional coordination polymeric structure, and structural variations may be attributed to the change in the alkali metal ion from Li(I) to Na(I) to K(I). Crystal data for 2 x 0.5MeCN x 0.25H(2)O: monoclinic space group C2/c, a = 24.5766(8) A, b = 13.2758(5) A, c = 19.9983(8) A, beta = 108.426(1) degrees, Z = 8, and V = 6190.4(4) A(3). Crystal data for 4: monoclinic space group P2(1)/c, a = 10.5774(7) A, b = 21.9723(15) A, c = 14.4196(10) A, beta = 110.121(1) degrees, Z = 4, and V = 3146.7(4) A(3). Crystal data for 6: monoclinic space group P2(1)/c, a = 12.307(3) A, b = 13.672(3) A, c = 20.575(4) A, beta = 92.356(4) degrees, Z = 4, and V = 3458.8(12) A(3). The thermal decomposition of these compounds indicated the formation of the corresponding AMS(2) materials.  相似文献   

4.
Two new layered gallophosphate-oxalate materials have been prepared hydrothermally using ethylenediamine and oxalic acid as structure-directing agents. The compounds (C2N2H10)2[Ga2(C2O4)2(HPO4)3].H2O 1 and (C2N2H10)3- [Ga4(C2O4)4(HPO4)4(H2PO4)2] 2 are closely related, consisting of anionic double chains built of alternating paris of GaO6 and HPO4 polyhedra. These double chains are linked via bridging HPO4 or H2PO4 tetrahedra to form corrugated layers containing eight-membered rings. The oxalate group acts as a bidentate ligand to each of the GaO6 octahedron. The corrugated layers are held together by strong to weak hydrogen-bonding interactions between oxalate groups, water and diprotonated ethylenediamine molecules, and the framework components. The compounds were characterized by single-crystal X-ray diffraction, thermogravimetric analysis, and infrared and Raman spectroscopy. Crystal data for 1: monoclinic, space group P21/C (No. 14), a = 6.355(1) A, b = 39.362(8) A, c = 9.249(2) A, beta = 106.7(1) degrees, Z = 2. Crystal data for 2: triclinic, space group P1 (No. 2), a = 8.730(1) A, b = 11.575(1) A, c = 11.696(1) A, alpha = 115.12(1) degree, beta = 90.07(1) degree, gamma = 111.23(1) degree, Z = 2.  相似文献   

5.
<正> Trigallium tris(orthophosphate) hydrate-2-ethanolamine was synthesized from the ethanolamine(EAN)-Ga2O3-P2O5-H2O system. The compound crystallizes in monoclinic system, space group P21/n, with a = 8.669(2), b = 17.932(4), c = 9.097(2) A,β= 108.32(1)°,V=1342.4 A3, Z = 4. The structure was solved by direct methods and refined to final R of 0.048. For the three gallium atoms in an asymmetric unit, the coordination tetrahedron of Ga(3) is nearly regular, while Ga(l) and Ga(2) are each coordinated by five oxygen atoms and their coordination polyhedra show some distortion from a trigonal bipyramid. The three-dimensional net in the crystal lattice is built of two-dimensional nets which are composed of irregular triangles, quadrilaterals, pentagons and octagons formed by Ga and P atoms. Moreover, the corrugated 2D nets running along [101] are linked together by two double-crank-shaft chains of GaPO4, one of which runs along [101] while the other along [101]. The ethanolamine molecule, so called the template,  相似文献   

6.
The new compound Ba(5)Ga(4)Se(10) has been synthesized for the first time. It crystallizes in the tetragonal space group I4/mcm with a = 8.752(2) ?, c = 13.971(9) ?, and Z = 2. The structure contains discrete [Ga(4)Se(10)](10-) anions and charge-compensating Ba(2+) cations. The novel highly anionic [Ga(4)Se(10)](10-) cluster is composed of two Ga(Se)(4) tetrahedra and two Ga(Ga)(Se)(3) tetrahedra with Ga in the 2+/3+ valence states. It also exhibits an unusually long Ga-Se distance of 2.705(2) ?, which has only been observed under high pressure conditions before. A band gap of 2.20(2) eV was deduced from the UV/vis diffuse reflectance spectrum.  相似文献   

7.
The synthesis of [(CH3)ClGaN3]4 (1) with a heterocyclic cyclooctane-like structure and [(CH3)BrGaN3]3 (2) with a trimeric structure has been demonstrated. X-ray structural determinations reveal that 1 and 2 consist of Ga4N4 eight-membered rings and Ga3N3 six-membered rings, respectively, in which the Ga atoms are bridged by the alpha nitrogens of the azide groups. [(CH3)ClGaN3]4 crystallizes in the tetragonal space group P42(1)c with a = 11.017(4) A, c = 8.699(7) A, and Z = 8. [(CH3)BrGaN3]3 crystallizes in the triclinic space group P1 with a = 8.1080(10) A, b = 9.9390(13) A, c = 10.4439(13) A, alpha = 86.069(3) degrees, beta = 86.771(3) degrees, gamma = 80.829(2) degrees, and Z = 6. The reaction of 1 and 2 with LiGaH4 yields [(CH3)HGaN3]x, which is a new low-temperature source of GaN.  相似文献   

8.
A series of group 13-15 compounds of the general formula [MYR(2)](n) (M = B, Al, Ga; Y = N, P, As; n = 1, 2; R = H, CH(3)) have been theoretically studied at the B3LYP/TZVP level of theory. The stability of different isomer structures is discussed to reveal the competitiveness of group 13-13, group 13-15, and group 15-15 bonding. Preferential bonding patterns and trends in the stability with respect to M and Y are also discussed. For the dimeric compounds, C(2v) symmetric [HMYH](2) rings are the lowest in energy, with the single exception of Ga(2)N(2)H(4), for which a somewhat unexpectedly C(2v) symmetric [GaNH(2)](2) ring is found to be the energy minimum, followed by the planar H(2)NGaGaNH(2) chain. The higher stability of the GaNH(2) bonding pattern in oligomer compounds may be rationalized in terms of the increasing stability of the oxidation state I as compared to that for the boron and aluminum analogues. Methylation significantly reduces the energetic differences between monomeric MYMe(2) MeMYMe, and Me(2)MY, isomers, especially for the AlP, AlAs, and GaAs systems, thus allowing a variety of structural types to be competitive in energy.  相似文献   

9.
Molten salt reactions of NH4H2AsO4, H3BO3, and MX (M = Li, Na, K, Rb Cs, NH4 and X = F, Cl, Br) yield numerous new alkali metal and alkali metal salt templated three-dimensional boroarsenate and fluoroboroarsenate frameworks. The structures of these materials are formed from BO4 (BO3F) and As(O,OH)4 tetrahedra defining channels and interlayer regions containing either simple alkali metal cations or both cations and halide anions. These boroarsenate-based frameworks are unusual in comparison with other oxotetrahedral-based materials in that terminal OH, on As, may be present, decorating the inner surfaces of the channels, as in the 12-membered rings of K2[B(AsO3O)2H]. This unit also permits coordination to nonframework anions as well as cations, so that (Cs2[BAsO3OH]8[AsO4]2[CsCl4]Cl)2 (and its Br analogue) contains layers of [CsCl4]3- and Cl- ions separated and coordinated by the protonated boroarsenate framework.  相似文献   

10.
A new complex constructed from a unit with two As3O6 rings capping Anderson-type moieties,[Ni(en)2(H2O)2]2[(NiO6)Mo6O18(As3O3)2]·2H2O(1,en = ethylenediamine),has been hydrothermally synthesized and characterized by IR,single-crystal X-ray diffraction and thermogra-vimetric analysis.The compound crystallizes in triclinic,space group P1 with a = 9.1230(16),b = 11.8078(9),c = 12.2111(9) ,α = 114.5210(10),β = 98.0350(10),γ = 100.0320(10)o,Mr = 2029.80,C8H44As6Mo6N8Ni3O36,V = 1145.0(2) 3,Dc = 2.944 g/cm3,Z = 1,GOF = 0.997,μ = 7.203 mm-1,F(000) = 970,R = 0.0352 and wR = 0.1019.Compound 1 consists of an Anderson-type capped by a two-ring(As3O6) unit [(NiO6)Mo6O18(As3O3)2]4-,two six-coordinate [Ni(en)2(H2O)2]2+ cations and two water molecules.  相似文献   

11.
Preparation and full characterization of the main-group diradical *NSNSC-CNSSN*, 8, the MF6- salt (As, Sb) of radical cation +NSNSC-CNSSN*, 8*+, and the AsF6- salt of the dication +NSNSC-CNSSN+, 82+, are presented. 8, a=6.717 (4), b=11.701(2), c=8.269(3) A, alpha=gamma=90, beta=106.69(3) degrees, monoclinic, space group P21/n, Z=4, T=203 K; 8SbF6, a=6.523(2), b=7.780(2), c=12.012(4) A, alpha=91.994(4), beta=96.716(4), gamma=09.177(4) degrees, triclinic, space group P, Z=2, T=198 K; 8[AsF6]2, a=12.7919(14), b=9.5760(11), c=18.532(2) A, alpha=gamma=90, beta=104.034(2) degrees, monoclinic, space group Pn, Z=6, T=198 K. Preparation of 8MF6 was carried out via a reduction of [CNSNS]2[MF6]2 (M=As, Sb) with either ferrocene or a SbPh3-NBu4Cl mixture. In the solid state, diamagnetic 8SbF6 contains centrosymmetric dimers [8*+]2 linked via two-electron four-centered pi*-pi* interactions with a thermally excited triplet state as detected by electron paramagnetic resonance (EPR). This is the first observation of a triplet excited state for a 7pi 1,2,3,5-dithiadiazolyl radical dimer. The singlet-triplet gap of the [-CNSSN*]2 radical pair was -1800+/-100 cm(-1) (-22+/-1 kJ/mol) with the ZFS components |D|=0.0267(6) cm(-1) and |E|=0.0012(1) cm(-1), corresponding to an in situ dimerization energy of ca. -11 kJ/mol. Cyclic voltammetry measurements of 8[AsF6]2 showed two reversible waves associated with a stepwise reduction of the two isomeric rings [E1/2 (+2/+1)=1.03 V; E1/2 (+1/0)=0.47 V, respectively]. 8MF6 (M=As, Sb) was further reduced to afford the mixed main-group diradical 8, containing two isomeric radical rings. In solution, 8 is thermodynamically unstable with respect to *NSSNC-CNSSN*, but is isolable in the solid state because of its low solubility in SO2. Likewise, 8SbF6, 8 is dimeric, with pi*-pi* interactions between different isomeric rings, and consequently diamagnetic; however, a slight increase in paramagnetism was observed upon grinding [from C=6.5(3)x10(-4) emu.K/mol and temperature-independent paramagnetism (TIP)=1.3(1)x10(-4) emu/mol to C=3.2(1)x10(-3) emu.K/mol and TIP=9.0(1)x10(-4) emu/mol], accompanied by an increase in the lattice-defect S=1/2 sites [from 0.087(1) to 0.43(1)%]. Computational analysis using the multiconfigurational approach [CASSCF(6,6)/6-31G*] indicated that the two-electron multicentered pi*-pi* bonds in [8*+]2 and [8]2 have substantial diradical characters, implying that their ground states are diradicaloid in nature. Our results suggest that the electronic structure of organic-radical ion pairs, for example, [TTF*+]2, [TCNE*-]2, [TCNQ*-]2, [DDQ*-]2, and related pi dimers, can be described in a similar way.  相似文献   

12.
Baiyin M  An Y  Liu X  Ji M  Jia C  Ning G 《Inorganic chemistry》2004,43(13):3764-3765
A novel framework K(2)Ag(6)Sn(3)S(10) was synthesized solvothermally and characterized by single-crystal diffraction. The framework comprises [Ag(6)SnS(4)](2+) cationic layers pillared by [SnS(3)](2)(-) zigzag chains formed by vertex-sharing SnS(4) tetrahedra, and potassium ions are located in 1D channels. This compound crystallizes in the orthorhombic Pbcn space group with a = 24.0201(2) A, b = 6.4017(3) A, c = 13.3056(4) A, Z = 4. Its thermal and optical properties are studied.  相似文献   

13.
Liu Z  Weng L  Chen Z  Zhao D 《Inorganic chemistry》2003,42(19):5960-5965
A new organically templated microporous zirconogermanate, (C(2)H(10)N(2))H(2)O[ZrGe(3)O(9)] (denoted as FDZG-3), with a low framework density of 13.6 T/1000 A(3), has been solvo/hydrothermally synthesized by using ZrO(NO(3))(2).2H(2)O as a zirconium source and triethylenetetramine (TETA) as a structure direct agent. This compound was characterized by means of single-crystal X-ray diffraction analysis, thermogravimetrical analysis, and IR and UV-vis spectra. Its three-dimensional (3D) framework is built up by 1D sinusoidal germanate chains cross-linked by ZrO(6) octahedra, which forms a network containing three- and seven-membered rings (MRs). Four intersecting 7-MR channels can be observed along the b axis, c axis, [110], and [-110] directions, respectively. Charge-balancing (C(2)H(10)N(2))(2+) and extraframework water molecules are encapsulated within 7-MR channels and form hydrogen bonds with framework oxygen atoms. Crystal data for FDZG-3: M = 533.13, monoclinic, space group Cc (No.9), a = 11.299(3) A, b = 7.7649(19) A, c = 13.835(3) A, beta = 104.826(3) degrees, V = 1173.4(5) A(3), Z = 4, R1 = 0.0263, wR2 = 0.0529.  相似文献   

14.
Two new intermetallic compounds, Yb(2)Ga(4)Ge(6) and Yb(3)Ga(4)Ge(6), were obtained from reactions in molten Ga. A third compound, Eu(3)Ga(4)Ge(6), was produced by direct combination of the elements. The crystal structures of these compounds were studied by single-crystal X-ray diffraction. Yb(2)Ga(4)Ge(6) crystallizes in an orthorhombic cell with a=4.1698(7), b=23.254(4), c=10.7299(18) A in the polar space group Cmc2(1). The structure of RE(3)Ga(4)Ge(6) is monoclinic, space group C2/m, with cell parameters a=23.941(6), b=4.1928(11), c=10.918(3) A, beta=91.426(4) degrees for RE=Yb, and a=24.136(2), b=4.3118(4), c=11.017(1) A, beta=91.683(2) degrees for RE=Eu. The refinement [I>2 sigma(I)] converged to the final residuals R(1)/wR(2)=0.0229/0.0589, 0.0411/0.1114, and 0.0342/0.0786 for Yb(2)Ga(4)Ge(6), Yb(3)Ga(4)Ge(6), and Eu(3)Ga(4)Ge(6), respectively. The structures of these two families of compounds can be described by a Zintl concept of bonding, in which the three-dimensional [Ga(4)Ge(6)](n-) framework serves as a host and electron sink for the electropositive RE atoms. The structural relation of RE(3)Ga(4)Ge(6) to of Yb(2)Ga(4)Ge(6) lies in a monoclinic distortion of the orthorhombic cell of Yb(2)Ga(4)Ge(6) and reduction of the [Ga(4)Ge(6)] network by two electrons per formula unit. The results of theoretical calculations of the electronic structure, electrical transport data, and thermochemical and magnetic measurements are also reported.  相似文献   

15.
Monometallic derivatives of tetrakis(1,2,5-thiadiazole)porphyrazine, [TTDPzH2], with main group tervalent metal ions having the formulae [TTDPzMX] (TTDPz = tetrakis(1,2,5-thiadiazole)porphyrazinato dianion; M = Al(III), X = Cl-, Br-, OH-; M = Ga(III), X = Cl-, OH-; M = In(III), X = AcO-) were prepared and investigated by single-crystal X-ray analysis and IR and UV-vis spectroscopy as well as cyclic voltammetry and spectroelectrochemistry. The complexes [TTDPzMX] (M = Al(III), X = Cl-, Br-; M = Ga(III), X = Cl-) were obtained by direct autocyclotetramerization of the precursor 3,4-dicyano-1,2,5-thiadiazole in hot quinoline in the presence of MX3 salts (M = Al(III), Ga(III); X = Cl-, Br-) and were hydrolized to form the corresponding hydroxide derivatives, [TTDPzMOH]. The In(III) complex, [TTDPzIn(OAc)], was obtained from the free-base macrocycle [TTDPzH2] with In(OH)(OAc)2 in CH3COOH. A single-crystal X-ray study was made at 173 K on the two isostructural species [TTDPzMCl] (M = Al(III), Ga(III)), which have space group P, with a = 12.470(14), b = 12.464(13), and c = 13.947(12) angstroms, alpha = 70.72(3), beta = 79.76(3), and gamma = 90.06(3) degrees, V = 2009.3(3) angstroms3, and Z = 4 for [TTDPzAlCl] and a = 12.429(3), b = 12.430(3), and c = 13.851(3) angstroms, alpha = 70.663(6), beta = 79.788(8), and gamma = 89.991(9) degrees, V = 1983.3(7) angstroms3, and Z = 4 for [TTDPzGaCl]. Square pyramidal coordination exists about the M(III) centers, with Cl- occupying the apical position (Al-Cl = 2.171(5) and Ga-Cl = 2.193(1) angstroms). Al(III) and Ga(III) are located at distances of 0.416(6) and 0.444(2) angstroms from the center of the N4 system. The molecular packing consists of stacked double layers with internal and external average interlayer distances of 3.2 and 3.3 angstroms, respectively. IR spectra show nu(Al-Cl) at 345 cm(-1) for [TTDPzAlCl], nu(Al-Br) at 330 cm(-1) for [TTDPzAlBr], and nu(Ga-Cl) at 382 cm(-1) for [TTDPzGaCl]. The UV-vis spectra in weakly basic (pyridine, DMF, DMSO) and acidic solvents (CF3COOH, H2SO4) show the typical intense pi --> pi transition bands in the Soret (300-400 nm) and Q-band regions (640-660 nm), the bands evidencing some dependence on the nature of the solvent, particularly in acidic solutions. Cyclic voltammetry, differential pulse voltammetry, and thin-layer spectroelectrochemical measurements in pyridine and dimethylformamide of the species [TTDPzMX] indicate reversible first and second one-electron reductions, whereas additional ill-defined reductions are observed at more negative potentials. The examined species are much easier to reduce than their phthalocyanine or porphyrin analogues as a result of the remarkable electron-attracting properties of the TTDPz macrocycle which contains annulated strongly electron-deficient thiadiazole rings.  相似文献   

16.
T Hu  CL Hu  F Kong  JG Mao  TC Mak 《Inorganic chemistry》2012,51(16):8810-8817
Three new galloborates, namely, GaB(5)O(8)(OH)(2)(en)(2)·H(2)O (1), LiGa(OH)(BO(3))(H(2)O) (2), and Rb(2)Ga(B(5)O(10))(H(2)O)(4) (3), have been synthesized by hydrothermal reactions. Compound 1 is the first example of a galloborate that contains an organic component. It crystallizes in space group P2(1)/c, and its crystal structure exhibits an infinite zigzag chain consisting of [B(5)O(8)(OH)(2)](3-) anions and GaO(2)N(4) octahedra interconnected via corner sharing. Compound 2 crystallizes in space group P31c with a layered structure composed of GaO(4), LiO(4), and BO(3) building units. Compound 3 belongs to chiral space group C222(1); the basic building blocks of the structure are the [B(5)O(10)](5-) cluster anion and GaO(4) tetrahedron, which are interconnected to form a three-dimensional network with tunnels of Ga2B6 eight-membered rings (8-MRs) which are filled by Rb(+) cations and lattice water molecules. Interestingly, Rb(2)Ga(B(5)O(10))(H(2)O)(4) displays a moderate second-harmonic generation (SHG) response comparable to that of KH(2)PO(4) (KDP), and it is phase matchable. Band structure and optical property calculations for Rb(2)Ga(B(5)O(10))(H(2)O)(4) based on DFT methods were also performed.  相似文献   

17.
1 INTRODUTION The d10 configuration of Cd(II) permits a wide variety of coordination numbers and geometries[1~3]. In recent years, one-, two- and three-dimensional infinite supramolecular coordination assemblies of Cd(II) have been the subject of great interest owing to their potential applications in catalysis, optical properties, clathration, etc[4~8]. In fabricating the coordination assemblies, organic ligands as well as inorganic anions have been observed to control the structural di…  相似文献   

18.
Three different perovskite-related phases were isolated in the SrGa(1-x)Sc(x)O(2.5) system: Sr(2)GaScO(5), Sr(10)Ga(6)Sc(4)O(25), and SrGa(0.75)Sc(0.25)O(2.5). Sr(2)GaScO(5) (x = 0.5) crystallizes in a brownmillerite-type structure [space group (S.G.) Icmm, a = 5.91048(5) ?, b = 15.1594(1) ?, and c = 5.70926(4) ?] with complete ordering of Sc(3+) and Ga(3+) over octahedral and tetrahedral positions, respectively. The crystal structure of Sr(10)Ga(6)Sc(4)O(25) (x = 0.4) was determined by the Monte Carlo method and refined using a combination of X-ray, neutron, and electron diffraction data [S.G. I4(1)/a, a = 17.517(1) ?, c = 32.830(3) ?]. It represents a novel type of ordering of the B cations and oxygen vacancies in perovskites. The crystal structure of Sr(10)Ga(6)Sc(4)O(25) can be described as a stacking of eight perovskite layers along the c axis ...[-(Sc/Ga)O(1.6)-SrO(0.8)-(Sc/Ga)O(1.8)-SrO(0.8)-](2).... Similar to Sr(2)GaScO(5), this structure features a complete ordering of the Sc(3+) and Ga(3+) cations over octahedral and tetrahedral positions, respectively, within each layer. A specific feature of the crystal structure of Sr(10)Ga(6)Sc(4)O(25) is that one-third of the tetrahedra have one vertex not connected with other Sc/Ga cations. Further partial replacement of Sc(3+) by Ga(3+) leads to the formation of the cubic perovskite phase SrGa(0.75)Sc(0.25)O(2.5) (x = 0.25) with a = 3.9817(4) ?. This compound incorporates water molecules in the structure forming SrGa(0.75)Sc(0.25)O(2.5)·xH(2)O hydrate, which exhibits a proton conductivity of ~2.0 × 10(-6) S/cm at 673 K.  相似文献   

19.
Reaction of GaCl(3) with 1 mol equiv of [14]aneS(4) in anhydrous CH(2)Cl(2) gives the exocyclic chain polymer [GaCl(3)([14]aneS(4))] (1) whose structure confirms trigonal bipyramidal coordination at Ga with a planar GaCl(3) unit. In contrast, using [16]aneS(4) and GaCl(3) or [16]aneSe(4) and MCl(3) (M = Ga or In) in either a 1:1 or a 1:2 molar ratio produces the anion-cation complexes [GaCl(2)([16]aneS(4))][GaCl(4)] (2) and [MCl(2)([16]aneSe(4))][MCl(4)] (M = Ga, 3 and M = In, 4) containing trans-octahedral cations with endocyclic macrocycle coordination. The ligand-bridged dimer [(GaCl(3))(2){o-C(6)H(4)(SMe)(2)}] (5) is formed from a 2:1 mol ratio of the constituents and contains distorted tetrahedral Ga(III). This complex is unusually reactive toward CH(2)Cl(2), which is activated toward nucleophilic attack by polarization with GaCl(3), producing the bis-sulfonium species [o-C(6)H(4)(SMeCH(2)Cl)(2)][GaCl(4)](2) (6), confirmed from a crystal structure. In contrast, the xylyl-based dithioether gives the stable [(GaCl(3))(2){o-C(6)H(4)(CH(2)SEt)(2)}] (8). However, replacing GaCl(3) with InCl(3) with o-C(6)H(4)(CH(2)SEt)(2) preferentially forms the 4:3 In:L complex [(InCl(3))(4){o-C(6)H(4)(CH(2)SEt)(2)}(3)] (9) containing discrete tetranuclear moieties in which the central In atom is octahedrally coordinated to six bridging Cl's, while the three In atoms on the edges have two bridging Cl's, two terminal Cl's, and two mutually trans S-donor atoms from different dithioether ligands. GaCl(3) also reacts with the cyclic bidentate [8]aneSe(2) to form a colorless, extremely air-sensitive adduct formulated as [(GaCl(3))(2)([8]aneSe(2))] (10), while InCl(3) gives [InCl(3)([8]aneSe(2))] (14). Very surprisingly, 10 reacts rapidly with O(2) gas to give initially the red [{[8]aneSe(2)}(2)][GaCl(4)](2) (11) and subsequently the yellow [{[8]aneSe(2)}Cl][GaCl(4)] (12). The crystal structure of the former confirms a dimeric [{[8]aneSe(2)}(2)](2+) dication, derived from coupling of two mono-oxidized {[8]aneE(2)}(+?) cation radicals to form an Se-Se bond linking the rings and weaker transannular 1,5-Se···Se interactions across both rings. The latter (yellow) product corresponds to discrete doubly oxidized {[8]aneSe(2)}(2+) cations (with a primary Se-Se bond across the 1,5-positions of the ring) with a Cl(-) bonded to one Se. Tetrahedral [GaCl(4)](-) anions provide charge balance in each case. These oxidation reactions are clearly promoted by the Ga(III) since [8]aneSe(2) itself does not oxidize in air. The new complexes have been characterized in the solid state by IR and Raman spectroscopy, microanalysis, and X-ray crystallography where possible. Where solubility permits, the solution characteristics have been probed by (1)H, (77)Se{(1)H}, and (71)Ga NMR spectroscopic studies.  相似文献   

20.
1 INTRODUCTION The chemical behavior of metal complexes with Schiff base ligand has attracted much attention be- cause of their catalytic activity in some industrial[1, 2] and biochemical processes[3~5]. As some metal com- plexes have shown the catalytic activity in some polymerization reactions[2, 6], we are recently inte- rested in polymerizartion of organo-silicon com- pounds catalyzed by Schiff base complexes of tran- sition metals. A series of Schiff base complexes have been prepare…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号