首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Part I of this study, generalized mathematical models were developed to describe the motion of fluids in porous media. The second part of this study solved the problem of fluid flow in small channels of a periodic elastic solid matrix at the pore scale numerically, and applied the volume-averaging technique to predict the macroscopic behavior of reservoirs. The numerical results demonstrated different macroscopic behavior of a porous medium due to cyclic excitation at various frequencies corresponding to the five separate characteristic macroscopic models identified in Part I. The results emphasize the need to use an appropriate model to interpret the corresponding responses of a saturated porous medium.  相似文献   

2.
可变形多孔介质中的一维非定常耦合渗流   总被引:7,自引:0,他引:7  
在Biot理论的基础上,考虑到可变形多孔介质的渗透系数依赖于孔隙变形的特点,建立了耦合渗流问题的基本方程;用初始层校正法求出了一维非定常耦合渗流问题的摄动解;实例计算表明,耦合分析与非耦合分析之间的判别较大,因此耦合效应不能忽略。  相似文献   

3.
We study the evolution of the water–oil front for two-phase, immiscible flow in heterogeneous porous media. Our analysis takes into account the viscous coupling between the pressure field and the saturation map. Although most of previously published stochastic homogenization approaches for upscaling two-phase flow in heterogeneous porous media neglect this viscous coupling, we show that it plays a crucial role in the dynamics of the front. In particular, when the mobility ratio is favorable, it induces a transverse flux that stabilizes the water–oil front, which follows a stationary behavior, at least in a statistical sense. Calculations are based on a double perturbation expansion of equations at first order: the local velocity fluctuation is defined as the sum of a viscous term related to perturbations of the saturation map, on one hand, plus the perturbation induced by the heterogeneity of the permeability field with a base-state saturation map, on the other hand. In this companion paper, we focus on flows in isotropic media. Our results predict the dynamics of the water–oil front for favorable mobility ratios. We show that the statistics of the front reach a stationary limit, as a function of the geostatistics of the permeability field and of the mobility ratio evaluated across the front. Results of numerical experiments and Monte-Carlo analysis confirm our predictions.  相似文献   

4.
Homogenization techniques are used to upscale from pore to laboratory or field scale viscous and second grade nonNewtonian flow in a porous medium. Nonlinear forms of Darcy's law are obtained and analysed under a series of symmetry properties. The general case of displacement of one of these fluids by another with different properties is considered and a linear stability analysis is performed.  相似文献   

5.
Fluid banks sometimes form during gravity-driven counter-current flow in certain natural reservoir processes. Prediction of flow performance in such systems depends on our understanding of the bank-formation process. Traditional modeling methods using a single capillary pressure curve based on a final saturation distribution have successfully simulated counter-current flow without fluid banks. However, it has been difficult to simulate counter-current flow with fluid banks. In this paper, we describe the successful saturation-history-dependent modeling of counter-current flow experiments that result in fluid banks. The method used to simulate the experiments takes into account hysteresis in capillary pressure and relative permeabilities. Each spatial element in the model follows a distinct trajectory on the capillary pressure versus saturation map, which consists of the capillary hysteresis loop and the associated capillary pressure scanning curves. The new modeling method successfully captured the formation of the fluid banks observed in the experiments, including their development with time. Results show that bank formation is favored where the pc-versus-saturation slope is low. Experiments documented in the literature that exhibited formation of fluid banks were also successfully simulated.  相似文献   

6.
The purpose of this study is to investigate factors that affect the formation of fluid banks during gravity-driven counter-current flow in porous media. To our knowledge, development of a fluid bank has been observed in only one previous counter-current flow experiment, although there are some hints of fluid banks in other experiments. We have undertaken experimental and simulation studies to confirm the presence of such banks and to delineate factors which enhance or inhibit their formation. Experiments were performed using glass bead packs and X-ray Computed Tomography to monitor saturation distribution as a function of time. The simulation approach considers saturation history at every point in the sample, defining conditions at each time point from hysteresis in capillary pressure and relative permeability. The model proved to reproduce experimental observations accurately. The experiments and associated model show that a minimal vertical sample height is needed for the development of a fluid bank. In addition, round sample boundaries and higher average nonwetting phase saturation tend to prevent the formation of a bank. The validated model can improve our ability to predict and optimize counter-current flow processes, both in the laboratory and in the field (e.g. exploration and hydrocarbon extraction).  相似文献   

7.
The Buckingham–Reiner models for the one-dimensional flow of a Bingham fluid along a uniform pipe or channel are well-known, but are modified here to cover much more general one-dimensional configurations. These include selections of channels with different widths, and five different probability density functions describing distributions of channel widths. It is found that the manner in which breakthrough occurs at the threshold pressure gradient depends very strongly on the type of distribution of pores and that a pseudo-threshold pressure gradient, which might be inferred from measurements of flow at relatively high pressure gradients, may be more than twice the magnitude of the true threshold gradient.  相似文献   

8.
变形双重介质广义流动分析   总被引:21,自引:0,他引:21  
对于碳酸盐油藏和低渗油藏的渗流问题,传统的研究方法都是假设地层渗透率是常数,这假设,对于地层渗透率是压力敏感的情况,对压力的空间变化和瞬时变化将导致较大的误差。本文研究了应力敏感地层中双重介质渗流问题的压力不稳定响应,不仅考虑了储层的双重介质特征,而且考虑了应力敏感地层中介质的变形,建立了应力敏感地层双重介质的数学模型,渗透率依赖于孔隙压力变化的流动方程是强非线性的,采用Douglas-Jones预估-校正法获得了只有裂缝发生形变定产量生产时无限大地层的数值解及定产量生产岩块与裂隙同时发生形变时无限大地层的数值解,并探讨了变形参数和双重介质参数变化时压力的变化规律,给出几种情况下典型压力曲线图版,这些结果可用于实际试井分析。  相似文献   

9.
Existence theorems are proved for solutions of problems of nonlinear gravity fluid filtration in regions with specified boundaries of complex geometry. The theory developed can be used to design the underground flow net of a hydraulic structure with specified filtration characteristics.  相似文献   

10.
Traditional mathematical models of multiphase flow in porous media use a straightforward extension of Darcys equation. The key element of these models is the appropriate formulation of the relative permeability functions. It is well known that for one-dimensional flow of three immiscible incompressible fluids, when capillarity is neglected, most relative permeability models used today give rise to regions in the saturation space with elliptic behavior (the so-called elliptic regions). We believe that this behavior is not physical, but rather the result of an incomplete mathematical model. In this paper we identify necessary conditions that must be satisfied by the relative permeability functions, so that the system of equations describing three-phase flow is strictly hyperbolic everywhere in the saturation triangle. These conditions seem to be in good agreement with pore-scale physics and experimental data.  相似文献   

11.
The purpose of this article is to derive a macroscopic model for a certain class of inertial two-phase, incompressible, Newtonian fluid flow through homogenous porous media. Starting from the continuity and Navier–Stokes equations in each phase β and γ, the method of volume averaging is employed subjected to constraints that are explicitly provided to obtain the macroscopic mass and momentum balance equations. These constraints are on the length- and time-scales, as well as, on some quantities involving capillary, Weber and Reynolds numbers that define the class of two-phase flow under consideration. The resulting macroscopic momentum equation relates the phase-averaged pressure gradient to the filtration or Darcy velocity in a coupled nonlinear form explicitly given by
or equivalently
In these equations, and are the inertial and coupling inertial correction tensors that are functions of flow-rates. The dominant and coupling permeability tensors and and the permeability and viscous drag tensors and are intrinsic and are those defined in the conventional manner as in (Whitaker, Chem Eng Sci 49:765–780, 1994) and (Lasseux et al., Transport Porous Media 24(1):107–137, 1996). All these tensors can be determined from closure problems that are to be solved using a spatially periodic model of a porous medium. The practical procedure to compute these tensors is provided.  相似文献   

12.
We study the evolution of the water–oil front for two-phase, immiscible flow in heterogeneous porous media. Our analysis takes into account the viscous coupling between the pressure field and the saturation map. Although most of previously published stochastic homogenization approaches for upscaling two-phase flow in heterogeneous porous media neglect this viscous coupling, we show that it plays a crucial role on the dynamics of the front. In particular, when the mobility ratio is favorable, the viscous coupling induces a transverse flux that stabilizes the water–oil front, which follows a stationary behavior, at least in a statistical sense. Calculations are based on a double perturbation expansion of equations at first order: the local velocity fluctuation is defined as the sum of a viscous term related to perturbations of the saturation map, on one hand, plus the perturbation induced by the heterogeneity of the permeability field with a base-state saturation map, on the other hand. In this first paper, we focus on flows in stratified reservoirs, with stratification parallel to the mean flow. Our results allow to predict the evolution of large Fourier mode of the front, and the emergence of a stationary front, for favorable mobility ratios. Numerical experiments confirm our predictions. Our approach is applied to downscaling. Extension of our theory to isotropic media is presented in the companion paper.  相似文献   

13.
Transport in Porous Media - Cilia, hair-like, organelles that are found in the respiratory tract (nasal cavity, pharynx, trachea, and bronchi) rhythmically beat to clear mucus from the airways....  相似文献   

14.
We investigate a two-dimensional network simulator that model the dynamics of drainage dominated flow where film flow can be neglected. We present a new method for simulating the temporal evolution of the pressure due to capillary and viscous forces in the displacement process. To model the dynamics, we let the local capillary pressure change as if the menisci move in and out of hour-glass shaped tubes. Furthermore, a method has been developed to allow simultaneous flow of two liquids into one tube. The model is suitable to simulate different time dependencies in two-phase drainage displacements. In this paper, we simulate the temporal evolution of the fluid pressures and analyze the time dependence of the front between the two liquids. The front width was found to be consistent with a scaling relation w t h(t/ts). The dynamical exponent, , describing the front width evolution as function of time, was estimated to = 1.0. The results are compared to experimental data of Frette and co-workers.  相似文献   

15.
A three-scale theory of swelling clay soils is developed which incorporates physico-chemical effects and delayed adsorbed water flow during secondary consolidation. Following earlier work, at the microscale the clay platelets and adsorbed water (water between the platelets) are considered as distinct nonoverlaying continua. At the intermediate (meso) scale the clay platelets and the adsorbed water are homogenized in the spirit of hybrid mixture theory, so that, at the mesoscale they may be thought of as two overlaying continua, each having a well defined mass density. Within this framework the swelling pressure is defined thermodynamically and it is shown to govern the effect of physico-chemical forces in a modified Terzaghi's effective stress principle. A homogenization procedure is used to upscale the mesoscale mixture of clay particles and bulk water (water next to the swelling mesoscale particles) to the macroscale. The resultant model is of dual porosity type where the clay particles act as sources/sinks of water to the macroscale bulk phase flow. The dual porosity model can be reduced to a single porosity model with long term memory by using Green's functions. The resultant theory provides a rational basis for some viscoelastic models of secondary consolidation.  相似文献   

16.
Abstract. The Picard and modified Picard iteration schemes are often used to numerically solve the nonlinear Richards equation governing water flow in variably saturated porous media. While these methods are easy to implement, they are only linearly convergent. Another approach to solve the Richards equation is to use Newton's iterative method. This method, also known as Newton–Raphson iteration, is quadratically convergent and requires the computation of first derivatives. We implemented Newton's scheme into the mixed form of the Richards equation. As compared to the modified Picard scheme, Newton's scheme requires two additional matrices when the mixed form of the Richards equation is used and requires three additional matrices, when the pressure head-based form is used. The modified Picard scheme may actually be viewed as a simplified Newton scheme.Two examples are used to investigate the numerical performance of different forms of the 1D vertical Richards equation and the different iterative solution schemes. In the first example, we simulate infiltration in a homogeneous dry porous medium by solving both, the h based and mixed forms of Richards equation using the modified Picard and Newton schemes. Results shows that, very small time steps are required to obtain an accurate mass balance. These small times steps make the Newton method less attractive.In a second test problem, we simulate variable inflows and outflows in a heterogeneous dry porous medium by solving the mixed form of the Richards equation, using the modified Picard and Newton schemes. Analytical computation of the Jacobian required less CPU time than its computation by perturbation. A combination of the modified Picard and Newton scheme was found to be more efficient than the modified Picard or Newton scheme.  相似文献   

17.
18.
The dissipative equilibrium dynamics studies the law of fluid motion under constraints in the contact interface of the coupling system. It needs to examine how con- straints act upon the fluid movement, while the fluid movement reacts to the constraint field. It also needs to examine the coupling fluid field and media within the contact in- terface, and to use the multi-scale analysis to solve the regular and singular perturbation problems in micro-phenomena of laboratories and macro-phenomena of nature. This pa- per describes the field affected by the gravity constraints. Applying the multi-scale anal- ysis to the complex Fourier harmonic analysis, scale changes, and the introduction of new parameters, the complex three-dimensional coupling dynamic equations are transformed into a boundary layer problem in the one-dimensional complex space. Asymptotic analy- sis is carried out for inter and outer solutions to the perturbation characteristic function of the boundary layer equations in multi-field coupling. Examples are given for disturbance analysis in the flow field, showing the turning point from the index oscillation solution to the algebraic solution. With further analysis and calculation on nonlinear eigenfunctions of the contact interface dynamic problems by the eigenvalue relation, an asymptotic per- turbation solution is obtained. Finally, a boundary layer solution to multi-field coupling problems in the contact interface is obtained by asymptotic estimates of eigenvalues for the G-N mode in the large flow limit. Characteristic parameters in the final form of the eigenvalue relation are key factors of the dissipative dynamics in the contact interface.  相似文献   

19.
We study traveling wave solutions arising in Sivashinsky’s model of subsonic detonation which describes combustion processes in inert porous media. Subsonic (shockless) detonation waves tend to assume the form of a reaction front propagating with a well defined speed. It is known that traveling waves exist for any value of thermal diffusivity [5]. Moreover, it has been shown that, when the thermal diffusivity is neglected, the traveling wave is unique. The question of whether the wave is unique in the presence of thermal diffusivity has remained open. For the subsonic regime, the underlying physics might suggest that the effect of small thermal diffusivity is insignificant. We analytically prove the uniqueness of the wave in the presence of non-zero diffusivity through applying geometric singular perturbation theory. Dedicated to Mr. Brunovsky in honor of his 70th birthday.  相似文献   

20.
王世芳  吴涛  郑秋莎 《力学季刊》2016,37(4):703-709
基于分形理论及毛细管模型,本文研究了非牛顿幂律流体在各向同性多孔介质中径向流动问题,推导了幂律流体径向有效渗透率的分形解析表达式.研究结果表明,幂律流体径向有效无量纲渗透率模型和Chang and Yortsos’s模型吻合很好;同时还得出幂律流体径向有效渗透率随孔隙率、幂指数的增加而增加,随迂曲度分形维数的增加而减少.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号