首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The extremely luminous supernova SN2006gy is explained as some other peculiar supernovae: light is produced by a radiative shock propagating in a dense circumstellar envelope. This envelope is formed by a previous weak explosion at a stage of hydrodynamic instability due to creation of electron-positron pairs in stellar interiors. The problems in the theory and observations of supernovae created by multiple explosions are briefly reviewed.  相似文献   

2.
A fraction of core-collapse supernovae of type Ib/c are associated with gamma-ray bursts, which are thought to produce highly relativistic jets. Recently, it has been hypothesized that a larger fraction of core-collapse supernovae produce slower jets, which may contribute to the disruption and ejection of the supernova envelope, and explain the unusually energetic hypernovae. We explore the TeV neutrino signatures expected from such slower jets, and calculate the expected detection rates with upcoming Gigaton Cherenkov experiments. We conclude that individual jetted supernovae may be detectable from nearby galaxies.  相似文献   

3.
An overview of the relationship between the astrophysics of supernovae and fundamental physics is given. It is shown how astronomical observations of supernovae are used to determine the parameters of matter in the most rarefied states (“dark energy”); it is also revealed that the mechanism of supernovae explosion is related to the properties of matter in the densest states. The distinction between thermonuclear and collapsing supernovae is explained. Some problems that arise in the theory of powerful cosmic explositions—supernovae and gamma-ray bursts—and which require new physics for solving them are indicated.  相似文献   

4.
本文先介绍超新星巡天和分类,简要地论述历史超新星SN 1006一千年,接着讨论核心塌缩超新星物理和具体事例(SN1987A 20年、 SN2006gy、 2008D)及超新星与γ射线暴的联系,文章重点讨论SNIa 和宇宙学,评述了SNIa在宇宙学中的应用和哈勃常数的确定,最后指出超新星研究目前存在的问题。  相似文献   

5.
In a 1996 JRO Fellowship Research Proposal (Los Alamos), the author suggested that neutrino oscillations may provide a powerful indirect energy transport mechanism to supernovae explosions. The principal aim of this addendum is to present the relevant unedited text of Section 1 of that proposal. We then briefly remind, (a) of an early suggestion of Mazurek on vacuum neutrino oscillations and their relevance to supernovae explosion, and (b) Wolfenstein's result on suppression of the effect by matter effects. We conclude that whether or not neutrino oscillations play a significant role in supernovae explosions shall depend if there are shells/regions of space in stellar collapse where matter effects play no essential role. Should such regions exist in actual astrophysical situations, the final outcome of neutrino oscillations on supernovae explosions shall depend, in part, on whether or not the LNSD signal is confirmed. Importantly, the reader is reminded that neutrino oscillations form a set of flavor-oscillation clocks and these clock suffer gravitational redshift which can be as large as 20 percent. This effect must be incorporated fully into any calculation of supernova explosion.  相似文献   

6.
The extreme luminosity and their fairly unique temporal behaviour have made supernovae a superb tool to measure distances in the universe. As complex astrophysical events they provide interesting insights into explosion physics, explosive nucleosynthesis, hydrodynamics of the explosion and radiation transport. They are an end product of stellar evolution and provide clues to the stellar composition. Since they can be observed at large distances they have become critical probes to further explore astrophysical effects, like dust properties in external galaxies and the star formation history of galaxies. Some of the astrophysics interferes with the cosmological applications of supernovae. The local velocity field, distorted by the gravitational attraction of the local large scale structure, and the reddening law appear at the moment the major limitations in the accuracy with which cosmological parameters can be determined. These absorption effects can introduce a secondary bias into the observations of the distant supernovae, which needs to be carefully evaluated. Supernovae have been used for the measurement of the Hubble constant, i.e. the current expansion rate of the universe, and the accelerated cosmic expansion directly inferred from the apparent faintness of the distant supernovae.  相似文献   

7.
本文总结了在Ⅱ型超新星爆发过程中可能发生的中微子与物质相互作用,综述了Ⅱ型超新星爆发的各个阶段的中微子过程,介绍了有关的中微子输运理论和几种主要近似方案。  相似文献   

8.
《Physics letters. [Part B]》1986,174(4):373-377
Constraints on mass and lifetime of heavy neutrinos imposed by supernova explosions are investigated. It is found that in the mass range of 10–70 MeV the constraint imposed by supernovae is more stringent than those given by cosmology. Any lifetime in this mass range is almost ruled out by the present constraint imposed by supernovae together with those imposed by high-energy experiments. It is suggested that if heavy neutrinos have mass and lifetime not ruled out by these constraints, the energy released by neutrino decay can induce supernova explosions even if the standard bounce-shock mechanism fails in explosions.  相似文献   

9.
Cross sections for the 44Ti(alpha,p)47V reaction which significantly affects the yield of 44Ti in supernovae were measured in the energy range 5.7 MeV相似文献   

10.
Prospects for studying, at the Baksan Neutrino Observatory, geoneutrinos, as well as neutrinos from supernovae, by means of a scintillation spectrometer having a target mass of 5000 t are considered. It is shown that the geographical location, a deep position (4800 mwe), and a modest background of antineutrinos from nuclear reactors makes the Baksan Neutrino Observatory one of the best places for performing such investigations. Particular attention is given to the derivation of information about the nature of neutrinos, the possibility of detecting relic neutrinos from supernovae, and the discovery of a hypothetical georeactor.  相似文献   

11.
Type Ia supernovae are very powerful probes for cosmology and clear tracers of the past history of the universe. Two independent high-redshift supernova collaborations (the High-Z Team and the Supernova Cosmology Project) have presented this year evidence that we live in a low-matter density universe whose expansion is being accelerated by the presence of a dominant vacuum energy density. The Supernova Cosmology Project by using the searches performed at various z for cosmological purposes has measured high-z supernova rates as well. Those measurements provide unvaluable information on the cosmic star formation history, on the efficiency in producing supernovae out of stars, and on the involved timescale to explosion. The cosmic background due to supernova emission can also be calculated in agreement with the measured rates.  相似文献   

12.
Gamma-ray bursts (GRBs) are rare, powerful explosions displaying highly relativistic jets. It has been suggested that a significant fraction of the much more frequent core-collapse supernovae are accompanied by comparably energetic but mildly relativistic jets, which would indicate an underlying supernova-GRB connection. We calculate the neutrino spectra from the decays of pions and kaons produced in jets in supernovae, and show that the kaon contribution is dominant and provides a sharp break near 20 TeV, which is a sensitive probe of the conditions inside the jet. For a supernova at 10 Mpc, 30 events above 100 GeV are expected in a 10 s burst in the IceCube detector.  相似文献   

13.
Core-collapse supernovae are accompanied by formation of neutron stars. The gravitational energy is transformed into the energy of the explosion, observed as SN II, SN Ib,c type supernovae. We present results of 2D MHD simulations, where the source of energy is rotation and the magnetic field serves as a “transition belt” for the transformation of the rotation energy into the energy of the explosion. The toroidal part of the magnetic energy initially grows linearly with time due to differential rotation. When the twisted toroidal component strongly exceeds the poloidal field, magneto-rotational instability develops, leading to a drastic acceleration in the growth of magnetic energy. Finally, a fast MHD shock is formed, producing a supernova explosion. A mildly collimated jet is produced for the dipolelike type of the initial field. The text was submitted by the authors in English.  相似文献   

14.
Heavy-ion experiments provide important data to test astrophysical models. The high-density equation of state can be probed in HI collisions and applied to the hot protoneutron star formed in core collapse supernovae. The parity radius experiment (PREX) aims to accurately measure the neutron radius of 208Pb with parity-violating electron scattering. This determines the pressure of neutron-rich matter and the density dependence of the symmetry energy. Competition between nuclear attraction and Coulomb repulsion can form exotic shapes called nuclear pasta in neutron star crusts and supernovae. This competition can be probed with multifragmentation HI reactions. We use large-scale semiclassical simulations to study nonuniform neutron-rich matter in supernovae. We find that the Coulomb interactions in astrophysical systems suppress density fluctuations. As a result, there is no first-order liquid-vapor phase transition. Finally, the virial expansion for low-density matter shows that the nuclear vapor phase is complex with significant concentrations of alpha particles and other light nuclei in addition to free nucleons.  相似文献   

15.
We present a new theory for the gravitational-wave signatures of core-collapse supernovae. Previous studies identified axisymmetric rotating core collapse, core bounce, postbounce convection, and anisotropic neutrino emission as the primary processes and phases for the radiation of gravitational waves. Our results, which are based on axisymmetric Newtonian supernova simulations, indicate that the dominant emission process of gravitational waves in core-collapse supernovae may be the oscillations of the protoneutron star core. The oscillations are predominantly of mode character, are excited hundreds of milliseconds after bounce, and typically last for several hundred milliseconds. Our results suggest that even nonrotating core-collapse supernovae should be visible to current LIGO-class detectors throughout the Galaxy, and depending on progenitor structure, possibly out to megaparsec distances.  相似文献   

16.
The dense shell method for the determination of distances to type-IIn supernovae has been briefly reviewed. Applying our method to SN 2006gy, SN 2009ip, and SN 2010jl supernovae, we have obtained distances in excellent agreement with the previously known distances to the parent galaxies. The dense shell method is based on the radiation hydrodynamic model of a supernova. The method of the blackbody model, as well as the correctness of its application for simple estimates of distances from observation data, has been justified.  相似文献   

17.
Titanium-rich subluminous supernovae are rare and challenge current SN nucleosynthesis models. We present a model in which ejecta from a standard supernova is impacted by a second explosion of the neutron star (a quark nova), resulting in spallation reactions that lead to (56)Ni destruction and (44)Ti creation under the right conditions. Basic calculations of the spallation products shows that a delay between the two explosions of ~5 days reproduces the observed abundance of (44)Ti in Cas A and explains its low luminosity as a result of the destruction of (56)Ni. Our results could have important implications for light curves of subluminous as well as superluminous supernovae.  相似文献   

18.
We show that the dipole of the luminosity distance is a useful observational tool which allows us to determine the Hubble parameter as a function of redshift H(z). We determine the number of supernovae needed to achieve a given precision for H(z) and to distinguish between different models for dark energy. We analyze a sample of nearby supernovae and find a dipole consistent with the cosmic microwave background at a significance of more than 2alpha.  相似文献   

19.
20.
The effect of a magnetic field of arbitrary strength on the beta decay and crossing symmetric processes is analyzed. A covariant calculation technique is used to derive the expression for the squares of S-matrix elements of these reactions, which is also valid in reference frames in which the medium moves as a single whole along magnetic field lines. Simple analytic expressions obtained for the neutrino and antineutrino emissivities for a moderately degenerate plasma fully characterize the emissivity and absorbability of the studied medium. It is shown that the approximation used here is valid for core collapse supernovae and accretion disks around black holes; beta processes in these objects are predominantly neutrino reactions. The analytic expressions obtained for the emissivities can serve as a good approximation for describing the interaction of electron neutrinos and antineutrinos with the medium of the objects in question and hold for an arbitrary magnetic field strength. Due to their simplicity, these expressions can be included in the magnetohydrodynamic simulation of supernovae and accretion disks to calculate neutrino and antineutrino transport in them. The rates of beta processes and the energy and momentum emitted in them are calculated for an optically transparent matter. It is shown that the macroscopic momentum transferred in the medium increases linearly with the magnetic field strength and can substantially affect the dynamics of supernovae and accretion disks in the regions of a degenerate matter. It is also shown that the rates of beta processes and the energy emission for a magnetic field strength of B ? 1015 G typical of supernovae and accretion disks are lower than in the absence of field. This suppression is stronger for reactions with neutrinos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号