首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) has made measurements of event-by-event fluctuations in the charged-particle multiplicity as a function of collision energy, centrality, collision species, and transverse momentum in several heavy-ion collision systems. It is observed that the fluctuations in terms of σ 2/μ 2 exhibit a universal power law scaling as a function of Nparticipants that is independent of the transverse momentum range of the measurement.  相似文献   

2.
The time evolution of pseudorapidity distributions of produced charged hadrons in d + Au collisions at = 200 GeV is investigated. Results of a nonequilibrium statistical relativistic diffusion model with three sources are compared with a macroscopic “bounce-back” model that does not allow for statistical equilibration at large times, but instead leads to motion reversal. When compared to the data, the results of the diffusion approach are more precise, thus emphasizing that the system is observed to be on its way to thermal equilibrium.  相似文献   

3.
Evidence is presented that diffusion drives colliding many-particle systems at relativistic energies from the initial δ–functions in rapidity towards the equilibrium distribution. Analytical solutions of a linear Fokker-Planck equation represent rapidity spectra for participant protons in central heavy-ion collisions at SPS-energies accurately. Thermal equilibrium in the interaction region is not attained, nonequilibrium features persist and can account for the broad rapidity spectra. Received: 24 November 1998 / Revised version: 20 February 1999  相似文献   

4.
It is shown that multifractal properties of some random and disordered systems can be simulated using thermodynamics of a generalized ideal monoatomic gas in a fractal phase space. Received 25 November 1998 and Received in final form 16 December 1998  相似文献   

5.
6.
Transverse-energy and charged-particle pseudorapidity densities at midrapidity and their ratio, dET/d|mid/dNch/d|mid, are evaluated in a statistical model with longitudinal and transverse flows for the wide range of colliders, from AGS to RHIC at = 200 GeV. Evaluations are done at freeze-out parameters obtained from independent fits to observed particle yields and pT spectra. Decays of hadron resonances are treated thoroughly and are included in derivations of dET/d|mid and dNch/d|mid. The predictions of the model agree well with the experimental data. However, some (explicable) overestimation of the ratio has been observed.  相似文献   

7.
A system of particles is studied in which the stochastic processes are one-particle type-change (or one-particle diffusion) and multi-particle annihilation. It is shown that, if the annihilation rate tends to zero but the initial values of the average number of the particles tend to infinity, so that the annihilation rate times a certain power of the initial values of the average number of the particles remain constant (the double scaling) then if the initial state of the system is a multi-Poisson distribution, the system always remains in a state of multi-Poisson distribution, but with evolving parameters. The large time behavior of the system is also investigated. The system exhibits a dynamical phase transition. It is seen that for a k-particle annihilation, if k is larger than a critical value kc, which is determined by the type-change rates, then annihilation does not enter the relaxation exponent of the system; while for k < kc, it is the annihilation (in fact k itself) which determines the relaxation exponent.  相似文献   

8.
The most general reaction-diffusion model on a Cayley tree with nearest-neighbor interactions is introduced, which can be solved exactly through the empty-interval method. The stationary solutions of such models, as well as their dynamics, are discussed. Concerning the dynamics, the spectrum of the evolution Hamiltonian is found and shown to be discrete, hence there is a finite relaxation time in the evolution of the system towards its stationary state.  相似文献   

9.
10.
Using simple scaling arguments and two-dimensional numerical simulations of a granular gas excited by vibrating one of the container boundaries, we study a double limit of small 1-r and large L, where r is the restitution coefficient and L the size of the container. We show that if the particle density n0 and (1-r2)(n0 Ld) where d is the particle diameter, are kept constant and small enough, the granular temperature, i.e. the mean value of the kinetic energy per particle, 〈E 〉/N, tends to a constant whereas the mean dissipated power per particle, 〈D 〉/N, decreases like when N increases, provided that (1-r2)(n0 Ld)2 < 1. The relative fluctuations of E, D and the power injected by the moving boundary, I, have simple properties in that regime. In addition, the granular temperature can be determined from the fluctuations of the power I(t) injected by the moving boundary.  相似文献   

11.
Elliptic flow at RHIC is computed event by event with NeXSPheRIO. Reasonable agreement with experimental results on v 2(η) is obtained. Various effects are studied as well: reconstruction of impact parameter direction, freeze-out temperature, equation of state (with or without crossover), emission mechanism.  相似文献   

12.
We consider three examples of dissipative dynamical systems involving many degrees of freedom, driven far from equilibrium by a constant or time dependent forcing. We study the statistical properties of the injected and dissipated power as well as the fluctuations of the total energy of these systems. The three systems under consideration are: a shell model of turbulence, a gas of hard spheres colliding inelastically and excited by a vibrating piston, and a Burridge-Knopoff spring-block model. Although they involve different types of forcing and dissipation, we show that the statistics of the injected power obey the “fluctuation theorem" demonstrated in the case of time reversible dissipative systems maintained at constant total energy, or in the case of some stochastic processes. Although this may be only a consequence of the theory of large deviations, this allows a possible definition of “temperature" for a dissipative system out of equilibrium. We consider how this “temperature" scales with the energy and the number of degrees of freedom in the different systems under consideration. Received 26 June 2000 and Received in final form 24 October 2000  相似文献   

13.
We analyze the relaxation behavior of a bistable system when the background temperature profile is inhomogeneous due to the presence of a localized hot region (blowtorch) on one side of the potential barrier. Since the diffusion equation for inhomogeneous medium is model-dependent, we consider two physical models to study the kinetics of such system. Using a conventional stochastic method, we obtain the escape and equilibration rates of the system for the two physical models. For both models, we find that the hot region enhances the escape rate from the well where it is placed while it retards the escape rate from the other well. However, the value of the escape rate from the well where the hot region is placed differs for the two models while that of the escape rate from the other well is identical for both. This work, for the first time, gives a detailed report of the similarities and differences of the escape rates and, hence, exposes the common and distinct features of the two known physical models in determining the way the bistable system relaxes. Received 25 September 2001  相似文献   

14.
Self-affine multiplicity scaling is investigated in the framework of two-dimensional factorial moment methodology using the concept of the Hurst exponent (H). Our investigation on experimental data of the target-evaporated slow particles emitted in 32S-AgBr interactions at 200 AGeV and 28Si-AgBr interactions at 14.5 AGeV reveals that a better power law behavior is exhibited in self-affine analysis than self-similar analysis. This work shows a clear evidence of self-affine target fragmentation. Received: 22 October 2001 / Accepted: 6 March 2002  相似文献   

15.
We analyze the effect of a colored non Gaussian noise on a model of a random walker moving along a ratchet potential. Such a model was motivated by the transport properties of motor proteins, like kinesin and myosin. Previous studies have been realized assuming white noises. However, for real situations, in general we could expect that those noises be correlated and non Gaussian. Among other aspects, in addition to a maximum in the current as the noise intensity is varied, we have also found another optimal value of the current when departing from Gaussian behavior. We show the relevant effects that arise when departing from Gaussian behavior, particularly related to current's enhancement, and discuss its relevance for both biological and technological situations.  相似文献   

16.
The influence of noise-flatness on overdamped motion of Brownian particles in a 1D periodic system with a simple sawtooth potential subjected to both unbiased thermal noise and three-level telegraph noise is considered. The exact formula for the stationary probability flux (current) is presented. The phenomenon of multiple current reversals and some topological properties of the hypersurface of zero current in the parameter space of noises are investigated and illustrated by phase diagrams. The conditions for the existence of four current reversals versus the switching rate of nonequilibrium noise are given. An alternative interpretation of the results in terms of cross-correlation between two dichotomous noises is presented.  相似文献   

17.
We consider a single harmonic oscillator coupled to a bath at zero temperature. As is well-known, the oscillator then has a higher average energy than that given by its ground state. Here we show analytically that for a damping model with arbitrarily discrete distribution of bath modes and damping models with continuous distributions of bath modes with cut-off frequencies, this excess energy is less than the work needed to couple the system to the bath, therefore, the quantum second law is not violated. On the other hand, the second law may be violated for bath modes without cut-off frequencies, which are, however, physically unrealistic models. An erratum to this article is available at .  相似文献   

18.
We investigate the quantum-mechanical tunneling between the “patterns" of the, so-called, associative neural networks. Being the relatively stable minima of the “configuration-energy" space of the networks, the “patterns" represent the macroscopically distinguishable states of the neural nets. Therefore, the tunneling represents a macroscopic quantum effect, but with some special characteristics. Particularly, we investigate the tunneling between the minima of approximately equal depth, thus requiring no energy exchange. If there are at least a few such minima, the tunneling represents a sort of the “random walk" process, which implies the quantum fluctuations in the system, and therefore “malfunctioning" in the information processing of the nets. Due to the finite number of the minima, the “random walk" reduces to a dynamics modeled by the, so-called, Pauli master equation. With some plausible assumptions, the set(s) of the Pauli master equations can be analytically solved. This way comes the main result of this paper: the quantum fluctuations due to the quantum-mechanical tunneling can be “minimized" if the “pattern"-formation is such that there are mutually “distant" groups of the “patterns", thus providing the “zone" structure of the “pattern" formation. This qualitative result can be considered as a basis of the efficient deterministic functioning of the associative neural nets. Received 15 July 1999  相似文献   

19.
Within the power-law approach for noise amplitude dependence on stochastic variables, we present a picture of noise-induced transitions in systems affected by coloured multiplicative noise. The governed equations for main statistical moments are obtained and investigated in detail. We show that a reentrant noise-induced transition is realized within a window of the control parameter. Received 15 October 2001 / Received in final form 8 July 2002 Published online 17 September 2002  相似文献   

20.
The transverse energy and the charged-particle multiplicity at midrapidity are evaluated in a single-freeze-out model for different centrality bins at RHIC at = 130 and 200GeV. The predictions of the model are done at the freeze-out parameters determined earlier from measured particle yields and pT spectra. The results agree qualitatively well with the experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号