首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Images captured by image acquisition systems using photon-counting devices such as astronomical imaging, positron emission tomography and confocal microscopy imaging, are often contaminated by Poisson noise. Total variation (TV) regularization, which is a classic regularization technique in image restoration, is well-known for recovering sharp edges of an image. Since the regularization parameter is important for a good recovery, Chen and Cheng (2012) proposed an effective TV-based Poissonian image deblurring model with a spatially adapted regularization parameter. However, it has drawbacks since the TV regularization produces staircase artifacts. In this paper, in order to remedy the shortcoming of TV of their model, we introduce an extra high-order total variation (HTV) regularization term. Furthermore, to balance the trade-off between edges and the smooth regions in the images, we also incorporate a weighting parameter to discriminate the TV and the HTV penalty. The proposed model is solved by an iterative algorithm under the framework of the well-known alternating direction method of multipliers. Our numerical results demonstrate the effectiveness and efficiency of the proposed method, in terms of signal-to-noise ratio (SNR) and relative error (RelRrr).  相似文献   

2.
In this paper, we propose a fast and efficient way to restore blurred and noisy images with a high-order total variation minimization technique. The proposed method is based on an alternating technique for image deblurring and denoising. It starts by finding an approximate image using a Tikhonov regularization method. This corresponds to a deblurring process with possible artifacts and noise remaining. In the denoising step, a high-order total variation algorithm is used to remove noise in the deblurred image. We see that the edges in the restored image can be preserved quite well and the staircase effect is reduced effectively in the proposed algorithm. We also discuss the convergence of the proposed regularization method. Some numerical results show that the proposed method gives restored images of higher quality than some existing total variation restoration methods such as the fast TV method and the modified TV method with the lagged diffusivity fixed-point iteration.  相似文献   

3.
Image segmentation is a hot topic in image science. In this paper we present a new variational segmentation model based on the theory of Mumford-Shah model. The aim of our model is to divide noised image, according to a certain criterion, into homogeneous and smooth regions that should correspond to structural units in the scene or objects of interest. The proposed region-based model uses total variation as a regularization term, and different fidelity term can be used for image segmentation in the cases of physical noise, such as Gaussian, Poisson and multiplicative speckle noise. Our model consists of five weighted terms, two of them are responsible for image denoising based on fidelity term and total variation term, the others assure that the three conditions of adherence to the data, smoothing, and discontinuity detection are met at once. We also develop a primal-dual hybrid gradient algorithm for our model. Numerical results on various synthetic and real images are provided to compare our method with others,these results show that our proposed model and algorithms are effective.  相似文献   

4.
We consider the problem of restoring images corrupted by Poisson noise. Under the framework of maximum a posteriori estimator, the problem can be converted into a minimization problem where the objective function is composed of a Kullback-Leibler(KL)-divergence term for the Poisson noise and a total variation(TV) regularization term. Due to the logarithm function in the KL-divergence term, the non-differentiability of TV term and the positivity constraint on the images, it is not easy to design stable and efficiency algorithm for the problem. Recently, many researchers proposed to solve the problem by alternating direction method of multipliers(ADMM). Since the approach introduces some auxiliary variables and requires the solution of some linear systems, the iterative procedure can be complicated. Here we formulate the problem as two new constrained minimax problems and solve them by Chambolle-Pock's first order primal-dual approach. The convergence of our approach is guaranteed by their theory. Comparing with ADMM approaches, our approach requires about half of the auxiliary variables and is matrix-inversion free. Numerical results show that our proposed algorithms are efficient and outperform the ADMM approach.  相似文献   

5.
A new denoising-deblurring model in image restoration is proposed,in which the regularization term carries out anisotropic diffusion on the edges and isotropic diffusion on the regular regions.The existence and uniqueness of weak solutions for this model are proved,and the numerical model is also testified.Compared with the TV diffusion,this model preferably reduces the staircase appearing in the restored images.  相似文献   

6.
This article introduces a novel variational model for restoring images degraded by Cauchy noise and/or blurring.The model integrates a nonconvex data-fidelity term with two regularization terms,a sparse representation prior over dictionary learning and total generalized variation(TGV)regularization.The sparse representation prior exploiting patch information enables the preservation of fine features and textural patterns,while adequately denoising in homogeneous regions and contributing natural visual quality.TGV regularization further assists in effectively denoising in smooth regions while retaining edges.By adopting the penalty method and an alternating minimization approach,we present an efficient iterative algorithm to solve the proposed model.Numerical results establish the superiority of the proposed model over other existing models in regard to visual quality and certain image quality assessments.  相似文献   

7.
基于分数阶微积分正则化的图像处理   总被引:1,自引:0,他引:1  
陈云  郭宝裕  马祥园 《计算数学》2017,39(4):393-406
全变分正则化方法已被广泛地应用于图像处理,利用此方法可以较好地去除噪声,并保持图像的边缘特征,但得到的优化解会产生"阶梯"效应.为了克服这一缺点,本文通过分数阶微积分正则化方法,建立了一个新的图像处理模型.为了克服此模型中非光滑项对求解带来的困难,本文研究了基于不动点方程的迫近梯度算法.最后,本文利用提出的模型与算法进行了图像去噪、图像去模糊与图像超分辨率实验,实验结果表明分数阶微积分正则化方法能较好的保留图像纹理等细节信息.  相似文献   

8.
Anisotropic Total Variation Filtering   总被引:1,自引:0,他引:1  
Total variation regularization and anisotropic filtering have been established as standard methods for image denoising because of their ability to detect and keep prominent edges in the data. Both methods, however, introduce artifacts: In the case of anisotropic filtering, the preservation of edges comes at the cost of the creation of additional structures out of noise; total variation regularization, on the other hand, suffers from the stair-casing effect, which leads to gradual contrast changes in homogeneous objects, especially near curved edges and corners. In order to circumvent these drawbacks, we propose to combine the two regularization techniques. To that end we replace the isotropic TV semi-norm by an anisotropic term that mirrors the directional structure of either the noisy original data or the smoothed image. We provide a detailed existence theory for our regularization method by using the concept of relaxation. The numerical examples concluding the paper show that the proposed introduction of an anisotropy to TV regularization indeed leads to improved denoising: the stair-casing effect is reduced while at the same time the creation of artifacts is suppressed.  相似文献   

9.
We consider the inpainting problem for noisy images. It is very challenge to suppress noise when image inpainting is processed. An image patches based nonlocal variational method is proposed to simultaneously inpainting and denoising in this paper. Our approach is developed on an assumption that the small image patches should be obeyed a distribution which can be described by a high dimension Gaussian Mixture Model. By a maximum a posteriori (MAP) estimation, we formulate a new regularization term according to the log-likelihood function of the mixture model. To optimize this regularization term efficiently, we adopt the idea of the Expectation Maximization (EM) algorithm. In which, the expectation step can give an adaptive weighting function which can be regarded as a nonlocal connections among pixels. Using this fact, we built a framework for non-local image inpainting under noise. Moreover, we mathematically prove the existence of minimizer for the proposed inpainting model. By using a splitting algorithm, the proposed model are able to realize image inpainting and denoising simultaneously. Numerical results show that the proposed method can produce impressive reconstructed results when the inpainting region is rather large.  相似文献   

10.
The total variation model proposed by Rudin, Osher and Fatemi performs very well for removing noise while preserving edges. However, it favors a piecewise constant solution in BV space which often leads to the staircase effect, and small details such as textures are often filtered out with noise in the process of denoising. To preserve the textures and eliminate the staircase effect, we improve the total variation model in this paper. This is accomplished by the following steps: (1) we define a new space of functions of fractional-order bounded variation called the BVα space by using the Grünwald–Letnikov definition of fractional-order derivative; (2) we model the structure of the image as a function belonging to the BVα space, and the textures in different scales as functions belonging to different negative Sobolev spaces. Thus, we propose a class of fractional-order multi-scale variational models for image denoising. (3) We analyze some properties of the fraction-order total variation operator and its conjugate operator. By using these properties, we develop an alternation projection algorithm for the new model and propose an efficient condition of the convergence of the algorithm. The numerical results show that the fractional-order multi-scale variational model can improve the peak signal to noise ratio of image, preserve textures and eliminate the staircase effect efficiently in the process of denoising.  相似文献   

11.
Segmentation of images with intensity inhomogeneity is a significant task in the field of image processing, especially in medical image processing and analysis. Some local region-based models work well on handling intensity inhomogeneity, but they are always sensitive to contour initialization and high noise. In this paper, we present an adaptive segmentation model for images with intensity inhomogeneity in the form of partial differential equation. Firstly, a global intensity fitting term and a local intensity fitting term are constructed by employing the global and local image information, respectively. Secondly, a tradeoff function is defined to adjust adaptively the weight between two fitting terms, which is based on the neighborhood contrast of image pixel. Finally, a weighted regularization term related to local entropy is used to ensure the smoothness of evolution curve. Meanwhile, a distance regularization term is added for stable level set evolution. Experimental results show that the proposed model without initial contour can segment inhomogeneous images stably and effectively, which thereby avoiding the influence of contour initialization on segmentation results. Besides, the proposed model works better on noise images comparing with two relevant segmentation models.  相似文献   

12.
余瑞艳 《数学杂志》2014,34(3):502-508
本文研究了全变差正则化模型在图像去噪过程中易产生阶梯效应的问题,依据图像的局部结构特利用联合高斯滤波器和边缘检测算子的方法,构建了广义全变差正则化图像去噪模型,获得了在消除噪声的同时能够保留图像边缘细节和纹理信息的结果.实验结果表明,广义全变差正则化模型在平滑噪声的同时能够保留图像的边缘轮廓等细节信息,得到的复原图像在峰值信噪比、平均结构相似度和主观视觉效果方面均有所提高.  相似文献   

13.
In this paper, we study a deblurring algorithm for distorted images by random impulse response. We propose and develop a convex optimization model to recover the underlying image and the blurring function simultaneously. The objective function is composed of 3 terms: the data‐fitting term between the observed image and the product of the estimated blurring function and the estimated image, the squared difference between the estimated blurring function and its mean, and the total variation regularization term for the estimated image. We theoretically show that under some mild conditions, the resulting objective function can be convex in which the global minimum value is unique. The numerical results confirm that the peak‐to‐signal‐noise‐ratio and structural similarity of the restored images by the proposed algorithm are the best when the proposed objective function is convex. We also present a proximal alternating minimization scheme to solve the resulting minimization problem. Numerical examples are presented to demonstrate the effectiveness of the proposed model and the efficiency of the numerical scheme.  相似文献   

14.
In this paper, we propose a new model for MR image reconstruction based on second order total variation ( \(\text {TV}^{2}\) ) regularization and wavelet, which can be considered as requiring the image to be sparse in both the spatial finite differences and wavelet transforms. Furthermore, by applying the variable splitting technique twice, augmented Lagrangian method and the Barzilai-Borwein step size selection scheme, an ADMM algorithm is designed to solve the proposed model. It reduces the reconstruction problem to several unconstrained minimization subproblems, which can be solved by shrinking operators and alternating minimization algorithms. The proposed algorithm needs not to solve a fourth-order PDE but to solve several second-order PDEs so as to improve calculation efficiency. Numerical results demonstrate the effectiveness of the presented algorithm and illustrate that the proposed model outperforms some reconstruction models in the quality of reconstructed images.  相似文献   

15.
The variational image decomposition model decomposes an image into a structural and an oscillatory component by regularization technique and functional minimization. It is an important task in various image processing methods, such as image restoration, image segmentation, and object recognition. In this paper, we propose a non-convex and non-smooth variational decomposition model for image restoration that uses non-convex and non-smooth total variation (TV) to measure the structure component and the negative Sobolev space H1 to model the oscillatory component. The new model combines the advantages of non-convex regularization and weaker-norm texture modeling, and it can well remove the noises while preserving the valuable edges and contours of the image. The iteratively reweighted l1 (IRL1) algorithm is employed to solve the proposed non-convex minimization problem. For each subproblem, we use the alternating direction method of multipliers (ADMM) algorithm to solve it. Numerical results validate the effectiveness of the proposed model for both synthetic and real images in terms of peak signal-to-noise ratio (PSNR) and mean structural similarity index (MSSIM).  相似文献   

16.
In this paper, we propose a new method for image restoration problems, which are degraded by impulsive noise, with nonconvex data fitting term and nonconvex regularizer.The proposed method possesses the advantages of nonconvex data fitting and nonconvex regularizer simultaneously, namely, robustness for impulsive noise and efficiency for restoring neat edge images.Further, we propose an efficient algorithm to solve the “Nonconvex+Nonconvex” structure problem via using the alternating direction minimization, and prove that the algorithm is globally convergent when the regularization parameter is known. However, the regularization parameter is unavailable in general. Thereby, we combine the algorithm with the continuation technique and modified Morozov’s discrepancy principle to get an improved algorithm in which a suitable regularization parameter can be chosen automatically. The experiments reveal the superior performances of the proposed algorithm in comparison with some existing methods.  相似文献   

17.
This paper considers a variational model for restoring images from blurry and speckled observations. This model utilizes the favorable properties of framelet regularization (e.g., the sparsity and multiresolution properties of the framelet) that are well suited for speckle noise reduction. For solving the model, we first propose an approximation model that is motivated by the well-known variable-splitting and penalty techniques in optimization. We then develop an alternating minimization algorithm to solve the approximation model. We also show that the sequence generated by the algorithm converges to the solution of the proposed model. The numerical results on simulated data and real utrasound images demonstrate that our approach outperforms several state-of-the-art algorithms.  相似文献   

18.
A fraction-order total variation blind image restoration algorithm based on L1-norm was proposed for restoring the images blurred by unknown point spread function (PSF) during imaging. According to the form of total variation, this paper introduced an arithmetic operator of fraction-order total variation and generated a mathematical model of cost. Semi-quadratic regularization was used to solve the model iteratively so that the solution of this algorithm became easier. This paper also analyzed the convergence of this algorithm and then testified its feasibility in theory. The experimental results showed the proposed algorithm can increase the PSNR of the restored image by 1 dB in relation to the first order total variation blind restoration method and Bayesian blind restoration method. The details in real blurred image were also pretty well restored. The effectiveness of the proposed algorithm revealed that it was practical in the blind image restoration.  相似文献   

19.
Variational methods have become an important kind of methods in signal and image restoration—a typical inverse problem. One important minimization model consists of the squared ?_2 data fidelity(corresponding to Gaussian noise) and a regularization term constructed by a potential function composed of first order difference operators. It is well known that total variation(TV) regularization, although achieved great successes,suffers from a contrast reduction effect. Using a typical signal, we show that, actually all convex regularizers and most nonconvex regularizers have this effect. With this motivation, we present a general truncated regularization framework. The potential function is a truncation of existing nonsmooth potential functions and thus flat on(τ, +∞) for some positive τ. Some analysis in 1 D theoretically demonstrate the good contrast-preserving ability of the framework. We also give optimization algorithms with convergence verification in 2 D, where global minimizers of each subproblem(either convex or nonconvex) are calculated. Experiments numerically show the advantages of the framework.  相似文献   

20.
The exterior problem of computed tomography (CT) is a special imaging modality and it is an important research issue in Non-Destructive Testing (NDT). In the exterior problem, the missing projection data vary with the position of the pixels. Furthermore, amounts of theoretical and experimental results showed that the edges that are tangent to the radial direction are much harder to be reconstructed than edges that are tangent to the angular direction. In this paper, a weighted directional total variation (WDTV) based regularization model was proposed to better deal with the exterior problem. By introducing the WDTV regularization term, our model can reconstruct high quality images. First, WDTV of an image also describes the sparsity of image gradient magnitude which can enforce the reconstructed result to be a nearly flat image. Second, our model can preserve edges and reduce artifacts near edges that are tangent to the radial direction. Third, a numerical implementation called SART+WDTV algorithm was developed to solve our model. Simulated and real experiments demonstrated that our model was more capable of suppressing artifacts and preserving edges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号