首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Peng  Jinzhu  Ding  Shuai  Yang  Zeqi  Xin  Jianbin 《Nonlinear dynamics》2020,100(2):1359-1378
Nonlinear Dynamics - This paper proposes an adaptive neural impedance control (ANIC) strategy for electrically driven robotic systems, considering system uncertainties and external disturbances....  相似文献   

2.
Nowadays, safety of road vehicles is an important issue due to the increasing road vehicle accidents. Passive safety system of the passenger vehicle is to minimize the damage to the driver and passenger of a road vehicle during an accident. Whereas an active steering system is to improve the response of the vehicle to the driver inputs even in adverse situations and thus avoid accidents. This paper presents a neural network-based robust control system design for the active steering system. Primarily, double-pinion steering system used modeling of the active steering system. Then four control structures are used to control prescribed random trajectories of the active steering system. These control structures are as classical PID Controller, Model-Based Neural Network Controller, Neural Network Predictive Controller and Robust Neural Network Predictive Control System. The results of the simulation showed that the proposed neural network-based robust control system had superior performance in adapting to large random disturbances.  相似文献   

3.
4.
In this paper, a nonautonomous impulsive neutral-type neural network with delays is considered. By establishing a singular impulsive delay differential inequality and employing contraction mapping principle, several sufficient conditions ensuring the existence and global exponential stability of the periodic solution for the impulsive neutral-type neural network with delays are obtained. Our results can extend and improve earlier publications. An example is given to illustrate the theory.  相似文献   

5.
A direct nonaffine hybrid control methodology is proposed for a generic hypersonic flight models based on fuzzy wavelet neural networks (FWNNs). The addressed strategy extends the previous indirect nonaffine control approaches stemming from simplified models of affine formulations. To cope with nonaffine effects on control design, analytically invertible models are constructed and then novel hybrid controllers are developed directly using nonaffine models. Furthermore, by employing FWNNs to devise adaptive terms, inversion errors are canceled via fuzzy neural approximations. In addition, robust terms are designed to achieve larger stable region in comparison with earlier work using Lyapunov synthesis. Finally, numerical simulation results from a hypersonic flight vehicle model are given to clarify the efficiency of the proposed direct nonaffine control scheme in the presence of parametric uncertainties.  相似文献   

6.
7.
This paper proposes a novel approach for bilateral teleoperation systems with a multi degrees-of-freedom (DOF) nonlinear robotic system on the master and slave side with constant time delay in a communication channel. We extend the passivity based architecture to improve position and force tracking and consequently transparency in the face of offset in initial conditions, environmental contacts and unknown parameters such as friction coefficients. The proposed controller employs a stable neural network on each side to approximate unknown nonlinear functions in the robot dynamics, thereby overcoming some limitations of conventional controllers such as PD or adaptive controllers and guaranteeing good tracking performance. Moreover, we show that this new neural network controller preserves the control passivity of the system. Simulation results show that NN controller tracking performance is superior to that of conventional controllers.  相似文献   

8.
Adaptive sliding mode control of dynamic system using RBF neural network   总被引:1,自引:0,他引:1  
This paper presents a robust adaptive sliding mode control strategy using radial basis function (RBF) neural network (NN) for a class of time varying system in the presence of model uncertainties and external disturbance. Adaptive RBF neural network controller that can learn the unknown upper bound of model uncertainties and external disturbances is incorporated into the adaptive sliding mode control system in the same Lyapunov framework. The proposed adaptive sliding mode controller can on line update the estimates of system dynamics. The asymptotical stability of the closed-loop system, the convergence of the neural network weight-updating process, and the boundedness of the neural network weight estimation errors can be strictly guaranteed. Numerical simulation for a MEMS triaxial angular velocity sensor is investigated to verify the effectiveness of the proposed adaptive RBF sliding mode control scheme.  相似文献   

9.
10.
11.
This paper focuses on the problem of the adaptive neural control for a class of a perturbed pure-feedback nonlinear system. Based on radial basis function (RBF) neural networks’ universal approximation capability, an adaptive neural controller is developed via the backstepping technique. The proposed controller guarantees that all the signals in the closed-loop system are bounded and the tracking error eventually converges to a small neighborhood around the origin. The main advantage of this note lies in that a control strategy is presented for a class of pure-feedback nonlinear systems with external disturbances being bounded by functions of all state variables. A numerical example is provided to illustrate the effectiveness of the suggested approach.  相似文献   

12.
Fang  Haoran  Wu  Yuxiang  Xu  Tian  Wan  Fuxi  Wang  Xiaohong 《Nonlinear dynamics》2022,110(1):497-512

This paper solves the prescribed-time control problem for a class of robotic manipulators with system uncertainty and dead zone input. To make the system stable within a given convergence time T, a novel prescribed-time adaptive neural tracking controller is proposed by using the temporal scale transformation method and Lyapunov stability theory. Unlike the finite-time and the fixed-time stability where the convergence time depends on the controller parameters, the convergence time constant T is introduced into the proposed controller so that the closed-loop system will be stable within T. To cope with the system uncertainty, radial basis function neural networks (RBFNNs) are used and only need to update one parameter online. In addition, by choosing the same structure and parameters of RBFNNs, the proposed method can shorten the convergence time of the neural networks. Finally, simulation results are presented to demonstrate the effectiveness of the prescribed-time controller.

  相似文献   

13.
Wang  RenMing  Zhang  YunNing  Chen  YangQuan  Chen  Xi  Xi  Lei 《Nonlinear dynamics》2020,100(2):1275-1287
Nonlinear Dynamics - This paper deals with chaos synchronization problem between two different uncertain fractional-order (FO) chaotic systems with disturbance based on FO Lyapunov stability...  相似文献   

14.
Yao  Dajie  Dou  Chunxia  Yue  Dong  Zhao  Nan  Zhang  Tingjun 《Nonlinear dynamics》2020,101(4):2249-2262
Nonlinear Dynamics - This paper proposes the consensus tracking control problem for a class of uncertain nonlinear multi-agent systems. By using a group of nonnegative functions, an adaptive neural...  相似文献   

15.
This paper presents an adaptive dynamic surface neural network control for a class of nonstrict-feedback uncertain nonlinear systems subjected to input saturation, dead zone and output constraint. The problem of input saturation is solved by designing an anti-windup compensator, and the issue of output constraint is addressed by introducing tan-type Barrier Lyapunov function. Furthermore, based on adaptive backstepping technique, a series of novel stabilizing functions are derived. First-order sliding mode differentiator is introduced into backstepping design to obtain the first-order derivative of virtual control. The real control input is obtained using dead-zone inverse method. It is proved that the proposed control scheme can achieve finite time convergence of the output tracking error into a small neighbor of the origin and guarantee all the closed-loop signals are bounded. Simulation results demonstrate the effectiveness of the proposed control scheme.  相似文献   

16.
Khan  Muhammad Umair  Kara  Tolgay 《Nonlinear dynamics》2020,101(4):2283-2297
Nonlinear Dynamics - The objective of this study is to design an optimal control scheme for the control of a class of nonlinear flexible multi-body systems with extremely coupled dynamics and...  相似文献   

17.
An error constraint control problem is considered for pure-feedback systems with non-affine functions being possibly in-differentiable. A new constraint variable is used to construct virtual control that guarantees the tracking error within the transient and steady-state performance envelopment. The new error transformation avoids non-differentiable problems and complex deductions caused by traditional error constraint approaches. A locally semi-bounded and continuous condition for non-affine functions is employed to ensure the controllability and transform the closed-loop system into a pseudo-affine form. An auxiliary system with bounded compensation term is proposed for nonlinear systems with input saturation. On the basis of backstepping technique, an adaptive neural controller is designed to handle unknown terms and circumvent repeated differentiations of virtual controls. The boundedness and convergence of the closed-loop system are proved by Lyapunov theory. Asymptotic tracking is achieved without violating control input constraint and error constraint. Two examples are performed to verify the theoretical findings.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号