首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents the design of planar four-bar linkages free of order, branch and circuit defects, for the purpose of path generation, having clearances at one, two, three or all of its joints. Joint clearance is treated as a massless virtual link and its direction is known by the direction of the joint force. A Particle Swarm Optimization based algorithm is given here to solve this highly nonlinear optimization problem with some constraints, namely; the Grashof’s and free of the foregoing defects conditions. An example is included in which the optimal problem is solved for different cases; namely planar four-bar linkage having clearances at one, two, three, all of the joints and without clearance. For all the designs, the generated paths, the errors and the directions of the virtual links are plotted and are compared. Finally, we compare the optimal designs with reality.  相似文献   

2.
大型柔性航天器展开锁定后,运动副中仍存在大量无法消除的间隙. 铰链间隙直接影响柔性航天器的姿态 运动和有效载荷的指向精度及稳定度,会对航天器的动力学特性造成较大的影响. 针对这一问题, 提出一种含间隙铰 接的航天器刚柔耦合动力学建模与控制方法. 首先建立含间隙的铰链精确动力学模型,从而构建含间隙铰接的柔性结构 动力学模型. 然后利用哈密顿原理和模态离散方法,建立含间隙铰接柔性航天器离散形式的刚柔耦合非线性动力学 模型,采用 Newmark 算法对非线性动力学方程进行求解. 基于压电纤维复合材料 (macro fiber composite, MFC) 驱动器 构建航天器的刚-柔-电耦合动力学方程,采用最优控制设计控制律. 分析了铰链参数、中心刚体转动惯量、间隙尺寸和间隙数目对航天器动力学特性的影响,着重研究了铰链间隙对航天器姿态运动和结构振动的影响作用. 最后采用 MFC 驱动器对航天器施加主动控制. 结果表明,铰链参数和中心刚体转动惯量影响航天器的固有频率;随着铰链间隙尺寸的增大及间隙数目的增多,航天器的整体刚度逐渐减小,而航天器的姿态角和振动位移响应不断增大;通过基于 MFC 的主动控制,能够实现含间隙铰接航天器姿态运动与结构振动的协同控制,并缓解间隙对系统动态特性造成的影响.  相似文献   

3.
含间隙铰接的柔性航天器刚柔耦合动力学与控制研究   总被引:1,自引:0,他引:1  
孙杰  孙俊  刘付成  朱东方  黄静 《力学学报》2020,52(6):1569-1580
大型柔性航天器展开锁定后,运动副中仍存在大量无法消除的间隙.铰链间隙直接影响柔性航天器的姿态运动和有效载荷的指向精度及稳定度,会对航天器的动力学特性造成较大的影响.针对这一问题,提出一种含间隙铰接的航天器刚柔耦合动力学建模与控制方法.首先建立含间隙的铰链精确动力学模型,从而构建含间隙铰接的柔性结构动力学模型.然后利用哈密顿原理和模态离散方法,建立含间隙铰接柔性航天器离散形式的刚柔耦合非线性动力学模型,采用Newmark算法对非线性动力学方程进行求解.基于压电纤维复合材料(macro fiber composite, MFC)驱动器构建航天器的刚-柔-电耦合动力学方程,采用最优控制设计控制律.分析了铰链参数、中心刚体转动惯量、间隙尺寸和间隙数目对航天器动力学特性的影响,着重研究了铰链间隙对航天器姿态运动和结构振动的影响作用.最后采用MFC驱动器对航天器施加主动控制.结果表明,铰链参数和中心刚体转动惯量影响航天器的固有频率;随着铰链间隙尺寸的增大及间隙数目的增多,航天器的整体刚度逐渐减小,而航天器的姿态角和振动位移响应不断增大;通过基于MFC的主动控制,能够实现含间隙铰接航天器姿态运动与结...  相似文献   

4.
This paper proposes a singularity-free beam element with Euler–Bernoulli assumption, i.e., the cross section remains rigid and perpendicular to the tangent of the centerline during deformation. Each node of this two-nodal beam element has eight nodal coordinates, including three global positions and one normal strain to describe the rigid translation and flexible deformation of the centerline, respectively, four Euler parameters or quaternion to represent the attitude of cross section. Adopting quaternion instead of Eulerian angles as nodal variables avoids the traditionally encountered singularity problem. The rigid cross section assumption is automatically satisfied. To guarantee the perpendicularity of cross section to the deformed neutral axes, the position and orientation coordinates are coupled interpolated by a special method developed here. The proposed beam element allows arbitrary spatial rigid motion, and large bending, extension, and torsion deformation. The resulting governing equations include normalization constraint equations for each quaternion of the beam nodes, and can be directly solved by the available differential algebraic equation (DAE) solvers. Finally, several numerical examples are presented to verify the large deformation, natural frequencies and dynamic behavior of the proposed beam element.  相似文献   

5.
In this investigation, a modeling procedure of a telescopic boom of cranes is developed using the absolute nodal coordinate formulation together with the sliding joint constraints. Since telescopic booms are extracted and retracted under various operating conditions, the overall length of the boom changes dynamically, leading to the time-variant vibration characteristics. For modeling the telescopic structure of booms, a special care needs to be exercised since the location of the sliding contact point moves along the deformable axis of the flexible boom and the solution to a moving boundary problem is required. This issue indeed makes the modeling of the telescopic boom difficult, despite the significant needs for the analysis. It is, therefore, the objective of this investigation to develop a modeling procedure for the flexible telescopic boom by considering the sliding contact condition with the dynamic frictional effect. To this end, the sliding joint constraint developed for the absolute nodal coordinate formulation is employed for describing relative sliding motion between flexible booms, while flexible booms are modeled using the beam element of the absolute nodal coordinate formulation, which allows for modeling the large rotation and deformation of the structure.  相似文献   

6.
This paper is concerned with the determination of the normal force-displacement (NFD) relation for the contact problem of cylindrical joints with clearance. A simple formulation for this contact problem is developed by modeling the pin as a rigid wedge and the elastic plate as a simple Winkler elastic foundation. The numerical results show that the normal displacement relation based on Hertz theory is only valid for the case of large clearance with a small normal load, and the NFD relation based on Persson theory is only effective in the case of very small clearance. The proposed approximate model in this paper gives better results than Hertz theory and Persson theory in a large range of clearances as seen from the comparison with the results of FEM. The project supported by the National Natural Science Foundation of (10272002; 60334030). The English text was polished by Keren Wang.  相似文献   

7.
王晓军  吕敬  王琪 《力学学报》2019,51(1):209-217
基于LuGre摩擦模型和线性互补问题(LCP)的数值算法,给出了具有双边约束含摩擦滑移铰平面多体系统动力学的数值算法.首先,根据滑移铰的特点,当间隙充分小时,将其视为双边约束,给出了滑移铰中滑道作用于滑块上的法向接触力的互补关系;LuGre摩擦模型能有效地描述机械系统中的黏滞与滑移运动,将该模型用于描述滑块与滑道间的摩擦力.其次,结合Baumgarte约束稳定化方法,应用第一类Lagrange方程,建立了该多体系统的动力学方程,给出了Lagrange乘子与滑移铰中作用于滑块上的法向接触力的关系式.然后,将滑块与滑道间多种接触状态的判断以及作用于滑块上的法向接触力的计算转换为线性互补问题的求解,并用常微分方程的数值算法求解该多体系统的动力学方程.最后,通过数值仿真算例揭示了滑移铰中滑块的黏滞与滑移现象,以及滑块在滑道内的多种接触状态;另外,在文中分别采用Coulomb干摩擦模型和LuGre摩擦模型,对算例中的某些工况进行了数值仿真,并且分别用本文方法得到的数值仿真结果与已有方法得到的数值仿真结果对比,表明了本文给出的方法的有效性.   相似文献   

8.
As a result of design, manufacturing and assembly processes or a wear effect, clearances are inevitable at the joints of mechanisms. In this study, dynamic response of mechanism having revolute joints with clearance is investigated. A four-bar mechanism having two joints with clearance is considered as a model mechanism. A neural network was used to model several characteristics of joint clearance. Kinematic and dynamic analyses were achieved using continuous contact mode between journal and bearing. A genetic algorithm was also used to determine the appropriate values of design variables for reducing the additional vibration effect due primarily to the joint clearance. The results show that the optimal adjusting of suitable design variables gives a certain decrease in shaking forces and their moments on the mechanism frame.  相似文献   

9.
多体系统动力学中关节效应模型的研究进展   总被引:4,自引:0,他引:4  
在一般的多体系统动力学研究中认为运动关节是理想运动副. 然而,实际中的运动关节不仅含有间隙与摩擦,还有间隙引起的关节元素之间的接触碰撞、局部变形和磨损. 多体系统动力学中的关节效应不仅引起了系统的振动和噪声,减小了系统的可靠性和寿命,而且损失了系统的精度和稳定性. 为此,对近十几年多体系统动力学中关节效应的研究进行了详细分析,总结了关节效应中间隙运动学模型、接触力模型与磨损模型在多体系统动力学中的建模过程. 其中,着重分析了多体系统动力学中关节磨损效应的研究进展,并对常用的Reye'shypothesis 和Archard 磨损模型进行了比较,详细地分析了Archard 磨损模型的演变形式以及主要磨损参数(接触应力,接触面积和滑移距离),特别分析了关键磨损参数接触应力的建模方法,解释了基于Winkler 弹性基础理论在求解接触应力时遇到的困难. 另外,介绍了4 种间隙运动副(转动副、移动副、圆柱副和球面副) 的运动学模型. 分析了考虑关节磨损多体系统动力学模型的一般建模方法,并以平面五杆机构为例说明了其建模过程.最后,简要地展望了多体系统动力学中关节效应模型的发展趋势以及应用前景.   相似文献   

10.
Joint clearance and flexible links are two important factors that affect the dynamic behaviors of planar mechanical system. Traditional dynamics studies of planar mechanism rarely take into account both influence of revolute clearance and flexible links, which results in lower accuracy. And many dynamics studies mainly focus on simple mechanism with clearance, the study of complex mechanism with clearance is a few. In order to study dynamic behaviors of two-degree-of-freedom (DOF) complex planar mechanical system more precisely, the dynamic analyses of the mechanical system with joint clearance and flexibility of links are studied in this work. Nonlinear dynamic model of the 2-DOF nine-bar mechanical system with revolute clearance and flexible links is built by Lagrange and finite element method (FEM). Normal and tangential force of the clearance joint is built by the Lankarani–Nikravesh and modified Coulomb’s friction models. The influences of clearance value and driving velocity of the crank on the dynamic behaviors are researched, including motion responses of slider, contact force, driving torques of cranks, penetration depth, shaft center trajectory, Phase diagram, Lyapunov exponents and Poincaré map of clearance joint and slider are both analyzed, respectively. Bifurcation diagrams under different clearance values and different driving velocities of cranks are also investigated. The results show that clearance joint and flexibility of links have a certain impact on dynamic behavior of mechanism, and flexible links can partly decrease dynamic response of the mechanical system with clearance relative to rigid mechanical system with clearance.  相似文献   

11.
应用BP神经网络建立了磨损率与接触应力、滑动速度和材料硬度之间的非线性关系模型,并对该网络模型进行了验证和测试,结果表明,训练良好的神经网络模型能够准确反映样本所蕴含的内在磨损规律,且具有较好的预测效果。基于非线性弹簧阻尼模型和修正的Coulomb摩擦力模型对含间隙曲柄滑块机构进行数值仿真分析,获得间隙机构运动副的接触应力和相对滑动速度,利用训练好的神经网络磨损模型对轴套的磨损进行迭代磨损预测分析,发现随着曲柄转数的增加,轴套表面一些特定位置处的磨损越来越严重,最终导致轴套表面出现非均匀磨损现象,其原因是间隙机构运转过程在一些特定位置处产生了较大接触应力和碰撞力。  相似文献   

12.
戴巧莲  陈力 《力学与实践》2016,38(4):386-390,397
研究了载体位置、姿态均不受控的情况下,系统参数不确定的柔性关节空间机器人轨迹跟踪的控制问题.结合系统动量、动量矩守恒关系,利用拉格朗日法推导出系统的动力学模型.为减小系统柔性关节对系统控制精度的影响,采用关节柔性补偿器来等效降低系统关节的柔性.再借助奇异摄动法,针对系统参数不确定的情况,设计了柔性关节空间机器人基于干扰观测器的退步自适应滑模控制方案.该方案不需要对系统惯性参数进行线性化处理,控制器结构简单,且实现了空间机器人期望轨迹的精确跟踪控制.通过平面两杆空间机器人的数值仿真证明了该方法的有效性.  相似文献   

13.
Modeling of clearance joints plays an important role in the analysis and design of multibody mechanical systems. Based on the absolute nodal coordinate formulation (ANCF), a new computational methodology for modeling and analysis of planar flexible multibody systems with clearance and lubricated revolute joints is presented. A planar absolute nodal coordinate formulation based on the locking-free shear deformable beam element is implemented to discretize the flexible bodies. A continuous contact-impact model is used to evaluate the contact force, in which energy dissipation in the form of hysteresis damping is considered. A force transition model from hydrodynamic lubrication forces to dry contact forces is introduced to ensure continuity in the joint reaction force. A comprehensive study with different lubrication force models has also been carried out. The generalized-α method is used to solve the equations of motion and several efficient methods are incorporated in the proposed model. Finally, the methodology is validated by two numerical examples.  相似文献   

14.
The contact problem of indentation of a pair of rigid punches with plane bases connected by an elastic beam into the boundary of an elastic half-plane is considered under the conditions of plane strain state. The external load is generated by lumped forces applied to the punches and a uniformly distributed normal load acting on the beam.It is assumed that the contact between the punch and the elastic half-plane can be described by L. A. Galin’s statement, i.e., it is assumed that the adhesion acts in the interior part of each of the contact regions and the tangential stresses obeying the Coulomb law act on their boundaries.With the symmetry taken into account, the problem is stated only for a single punch, and solving this problem is reduced to a system of four singular integral equations for the tangential and normal stresses in the adhesion region and the contact pressure in the sliding zones. The solution of the constitutive system together with three conditions of equilibrium of the system of punches connected by a beam is constructed by direct numerical integration by the method of mechanical quadratures.As a result of the numerical analysis, the contact stress distribution functions were constructed and the values of the sliding zones and the punch rotation angle were determined for various values of the geometric, elastic, and force characteristics.  相似文献   

15.
The clearances in the kinematic joints are due to deformations, wear, and manufacturing errors; the accurate modeling of these effects in multibody analysis is a complex issue but in many practical applications, it is mandatory to take into them into account in order to understand the actual behavior of mechanical systems. In this paper, the authors present a general computer-aided model of a 3D revolute joint with clearance suitable for implementation in multibody dynamic solvers. While a perfect revolute joint imposes kinematic constraints, the proposed revolute joint with clearance leads to a force constraint. The revolute joint has been modeled by introducing a nonlinear equivalent force system, which takes into account the contact elastic deformations. The model depends on the structural and geometrical properties of materials in contact that have been investigated using finite element models. The purpose is to give a general approach to study the influence of actual joints on kinematic, dynamic, and structural behavior of mechanisms. The proposed model has been applied in dynamic simulations of a spatial slider-crank mechanism.  相似文献   

16.
The paper presents a method of modelling dynamics of mechanisms in which assembly errors can occur. One of the features of the method is that such errors can be included when the kinematics of the mechanism is modelled. A closed kinematic chain consisting of flexible and rigid links with one joint displaced and turned is discussed. Use of joint coordinates together with the rigid finite element method for discretisation of flexible links has allowed us to considerably decrease the size of the problem. Numerical simulations are carried out in order to analyse the influence of inaccurate assembly on the load on joints of a four-bar linkage.  相似文献   

17.
Summary A transient contact problem with frictional heating and wear for two nonuniform sliding half-spaces is considered. One of the two half-spaces is assumed to be slightly curved to give a Hertzian initial pressure distribution: the other is a rigid nonconductor. Under the assumption that the contact pressure distribution could be described by Hertz formulas during all the process of interaction, the problem is formulated in terms of one integral equation of Volterra type with unknown radius of contact area. A numerical solution of this equation is obtained using a piecewise-constant presentation of an unknown function. The influence of operating parameters on the contact temperature and the radius of the contact area is studied. Accepted for publication 3 November 1996  相似文献   

18.
A solution is obtained for a contact problem concerning the tension of a rectangular elastic plate with a circular hole into which a rigid stationary pin has been inserted. There is a small gap between the hole and the pin, which is of circular cross section. Friction acts in the contact region in accordance with the Coulomb law. The finite-element method and the Boussinesq principle are used to determine the load that realizes a specified contact region. Two variants of boundary conditions on the contour of the hole are examined. Lavrent'ev Institute of Hydrodynamics, Siberian Division, Russian Academy of Sciences, Novosibirsk 630090. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 39, No. 4, pp. 184–192, July–August, 1998.  相似文献   

19.
Clearance as a real joint characteristic leads to deviation from desired trajectory in articulated mechanisms. This phenomenon makes the kinematic and dynamic performances of the mechanism worse. In this study, kinematic analysis of a Jansen’s mechanism used in a walking machine is performed. The model mechanism having two revolute joints with clearance is investigated for the trajectory analysis of the output link. It is clear that the mechanism’s trajectory is very sensitive to the clearance joint characteristics even if the clearance size is small. The adaptive network-based fuzzy inference system (ANFIS) is used to model the characteristics of joints with clearance. By using the suitable design variables and constraints, minimization of the trajectory errors arising from clearance is considered as an optimization problem. Optimization techniques are used to solve this problem for adjusting the optimum values of design variables. The obtained link dimensions show the success of the proposed modeling and optimization approach.  相似文献   

20.
The main objective of this work is to present a computational and experimental study on the contact forces developed in revolute clearance joints. For this purpose, a well-known slider-crank mechanism with a revolute clearance joint between the connecting rod and slider is utilized. The intra-joint contact forces that are generated at these clearance joints are computed by considering several different elastic and dissipative approaches, namely those based on the Hertz contact theory and the ESDU tribology-based cylindrical contacts, along with a hysteresis-type dissipative damping. The normal contact force is augmented with the dry Coulomb’s friction force. In addition, an experimental apparatus is used to obtained some experimental data in order to verify and validate the computational models. From the outcomes reported in this paper, it is concluded that the selection of the appropriate contact force model with proper dissipative damping plays a significant role in the dynamic response of mechanical systems involving contact events at low or moderate impact velocities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号