首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Let ψ1, …,ψN be orthonormal functions in Rd and let ui = (?Δ)?12ψi, or ui = (?Δ + 1)?12ψi, and let p(x) = ∑¦ui(x)¦2. Lp bounds are proved for p, an example being ∥p∥p ? AdN1pfor d ? 3, with p = d(d ? 2)?1. The unusual feature of these bounds is that the orthogonality of the ψi, yields a factor N1p instead of N, as would be the case without orthogonality. These bounds prove some conjectures of Battle and Federbush (a Phase Cell Cluster Expansion for Euclidean Field Theories, I, 1982, preprint) and of Conlon (Comm. Math. Phys., in press).  相似文献   

2.
Let λ1 and λN be, respectively, the greatest and smallest eigenvalues of an N×N hermitian matrix H=(hij), and x=(x1,x2,…,xN) with (x,x)=1. Then, it is known that (1) λ1?(x,Hx)?λN and (2) if, in addition, H is positive definite, 1N)21λN?(x,Hx)(x,H?1x)?1. Assuming that y=(y1,y2,…, yN) and |yi|?1, i=1,2,…,N, it is shown in this paper that these inequalities remain true if H and H?1 are, respectively, replaced by the Hadamard products M(y)1H and M(y)1H?1, where M(y) is a matrix defined by M(y)=(δij+(1?δij)yiyj. Subsequently, these results are extended to improve the spectral bounds of M(y)1H.  相似文献   

3.
The composition of two Calderón-Zygmund singular integral operators is given explicitly in terms of the kernels of the operators. For φ?L1(Rn) and ε = 0 or 1 and ∝ φ = 0 if ε = 0, let Ker(φ) be the unique function on Rn + 1 homogeneous of degree ?n ? 1 of parity ε that equals φ on the hypersurface x0 = 1. Let Sing(φ, ε) denote the singular integral operator Sing(φ, ε)f(x0, x) = limδ → 0 ∝∝¦y0¦ ? δf(x0 ? y0, x ? y), Ker(φ)(y0, y) dy0 dy, which exists under suitable growth conditions on ? and φ. Then Sing(φ, ε1) Sing(ψ, ε2)f = ?2π2(∝ φ)(∝ ψ)f + Sing(A, ε1, + ε2)f, where
A(x)=limδ→0∫∫δ?|λ|?δ?1|λ+1|?1+?2n|λ|?2θ(x+λ(x?y))ψ(y)dλdy
(with notation ¦t¦0a = ¦t¦aand ¦t¦1a = ¦t¦asgn t). This result is used to show that the mapping ψA is a classical pseudo-differential operator of order zero if φ is smooth, with top-order symbol
ω0(x,?)=?πiθ(?)∫θ(x?y)sgn y·?dy if ?1=1
,
=?2θ(?)∫θ(x?y)log|y·?|dy if ?1=0
where θ(ξ) is a cut-off function. These results are generalized to singular integrals with mixed homogeneity.  相似文献   

4.
Let p, q be arbitrary parameter sets, and let H be a Hilbert space. We say that x = (xi)i?q, xi ? H, is a bounded operator-forming vector (?HFq) if the Gram matrixx, x〉 = [(xi, xj)]i?q,j?q is the matrix of a bounded (necessarily ≥ 0) operator on lq2, the Hilbert space of square-summable complex-valued functions on q. Let A be p × q, i.e., let A be a linear operator from lq2 to lp2. Then exists a linear operator ǎ from (the Banach space) HFq to HFp on D(A) = {x:x ? HFq, A〈x, x〉12 is p × q bounded on lq2} such that y = ǎx satisfies yj?σ(x) = {space spanned by the xi}, 〈y, x〉 = Ax, x〉 and 〈y, y〉 = A〈x, x〉12(A〈x, x〉12)1. This is a generalization of our earlier [J. Multivariate Anal.4 (1974), 166–209; 6 (1976), 538–571] results for the case of a spectral measure concentrated on one point. We apply these tools to investigate q-variate wide-sense Markov processes.  相似文献   

5.
6.
Let u(x, t) be the solution of utt ? Δxu = 0 with initial conditions u(x, 0) = g(x) and ut(x, 0) = ?;(x). Consider the linear operator T: ?; → u(x, t). (Here g = 0.) We prove for t fixed the following result. Theorem 1: T is bounded in Lp if and only if ¦ p?1 ? 2?1 ¦ = (n ? 1)?1and ∥ T?; ∥LαP = ∥?;∥LPwith α = 1 ?(n ? 1) ¦ p?1 ? 2?1 ¦. Theorem 2: If the coefficients are variables in C and constant outside of some compact set we get: (a) If n = 2k the result holds for ¦ p?1 ? 2?1 ¦ < (n ? 1)?1. (b) If n = 2k ? 1, the result is valid for ¦ p?1 ? 2?1 ¦ ? (n ? 1). This result are sharp in the sense that for p such that ¦ p?1 ? 2?1 ¦ > (n ? 1)?1 we prove the existence of ?; ? LP in such a way that T?; ? LP. Several applications are given, one of them is to the study of the Klein-Gordon equation, the other to the completion of the study of the family of multipliers m(ξ) = ψ(ξ) ei¦ξ¦ ¦ ξ ¦ ?b and finally we get that the convolution against the kernel K(x) = ?(x)(1 ? ¦ x ¦)?1 is bounded in H1.  相似文献   

7.
Results on partition of energy and on energy decay are derived for solutions of the Cauchy problem ?u?t + ∑j = 1n Aj?u?xj = 0, u(0, x) = ?(x). Here the Aj's are constant, k × k Hermitian matrices, x = (x1,…, xn), t represents time, and u = u(t, x) is a k-vector. It is shown that the energy of Mu approaches a limit EM(?) as ¦ t ¦ → ∞, where M is an arbitrary matrix; that there exists a sufficiently large subspace of data ?, which is invariant under the solution group U0(t) and such that U0(t)? = 0 for ¦ x ¦ ? a ¦ t ¦ ? R, a and R depending on ? and that the local energy of nonstatic solutions decays as ¦ t ¦ → ∞. More refined results on energy decay are also given and the existence of wave operators is established, considering a perturbed equation E(x) ?u?t + ∑j = 1n Aj?u?xj = 0, where ¦ E(x) ? I ¦ = O(¦ x ¦?1 ? ?) at infinity.  相似文献   

8.
According to a result of A. Ghizzetti, for any solution y(t) of the differential equation where y(n)(t)+ i=0n?1 gi(t) yi(t)=0 (t ? 1), 1 ¦gi(x)¦xn?I?1 dx < ∞ (0 ?i ? n ?1, either y(t) = 0 for t ? 1 or there is an integer r with 0 ? r ? n ? 1 such that limt → ∞ y(t)tr exists and ≠0. Related results are obtained for difference and differential inequalities. A special case of the former has interesting applications in the study of orthogonal polynomials.  相似文献   

9.
A spectral representation for the self-adjoint Schrödinger operator H = ?Δ + V(x), x? R3, is obtained, where V(x) is a long-range potential: V(x) = O(¦ x ¦?(12)), grad V(x) = O(¦ x ¦?(32)), ΛV(x) = O(¦ x s?) (δ > 0), Λ being the Laplace-Beltrami operator on the unit sphere Ω. Namely, we shall construct a unitary operator F from PL2(R3) onto L2((0, ∞); L2(Ω)), P being the orthogonal projection onto the absolutely continuous subspace for H, such that for any Borel function α(λ),
(α(H)(Pf,g)=0 (α(λ)(Ff)(λ),(Fg)(λ))L2(ω) dλ
.  相似文献   

10.
If k is a perfect field of characteristic p ≠ 0 and k(x) is the rational function field over k, it is possible to construct cyclic extensions Kn over k(x) such that [K : k(x)] = pn using the concept of Witt vectors. This is accomplished in the following way; if [β1, β2,…, βn] is a Witt vector over k(x) = K0, then the Witt equation yp ? y = β generates a tower of extensions through Ki = Ki?1(yi) where y = [y1, y2,…, yn]. In this paper, it is shown that there exists an alternate method of generating this tower which lends itself better for further constructions in Kn. This alternate generation has the form Ki = Ki?1(yi); yip ? yi = Bi, where, as a divisor in Ki?1, Bi has the form (Bi) = qΠpjλj. In this form q is prime to Πpjλj and each λj is positive and prime to p. As an application of this, the alternate generation is used to construct a lower-triangular form of the Hasse-Witt matrix of such a field Kn over an algebraically closed field of constants.  相似文献   

11.
The regular representation of O(n, N) acting on L2(O(n, N)O(n, N ? 1)) is decomposed into a direct integral of irreducible representations. The homogeneous space O(n, N)O(n, N ? 1) is realized as the Hyperboloid H = {(x, t) ? Rn + N : ¦ t ¦2 ? ¦ x ¦2 = 1}. The problem is essentially equivalent to finding the spectral resolution of a certain self-adjoint invariant differential operator □h on H, which is the tangential part of the operator □ = Δx ? Δt on Rn + N. The spectrum of □h contains a discrete part (except when N = 1) with eigenfunctions generated by restricting to H solutions of □u = 0 which vanish in the region ¦ t ¦ < ¦ x ¦, and a continuous part H?. As a representation of O(n, N), H?H? is unitarily equivalent to the regular representation on L2 of the cone {(x, t) : ¦ x ¦2 = ¦ t ¦2}, and the intertwining operator is obtained by solving the equation □u = 0 with given boundary values on the cone. Explicit formulas are given for the spectral decomposition. The special case n = N = 2 gives the Plancherel formula for SL(2, R).  相似文献   

12.
Let Lu be the integral operator defined by (Lk?)(x, y) = ∝ s ∝ ?(x′, y′)(eik??) dx′ dy′, (x, y) ? S where S is the interior of a smooth, closed Jordan curve in the plane, k is a complex number with Re k ? 0, Im k ? 0, and ?2 = (x ?x′)2 + (y ? y′)2. We define q(x, y) = [dist((x, y), ?S)]12, (x, y) ? S; L2(q, S) = {? : ∝ s ∝ ¦ ?(x, y)¦2 q(x, y) dx dy < ∞}; W21(q, S) = {? : ? ? L2(q, S), ???x, ?f?y ? L2(q, S)}, where in the definition of W21(q, S) the derivatives are taken in the sense of distributions. We prove that Lk is a continuous 1-l mapping of L2(q, S) onto W21(q, S).  相似文献   

13.
14.
The compactness method to weighted spaces is extended to prove the following theorem:Let H2,s1(B1) be the weighted Sobolev space on the unit ball in Rn with norm
6ν612,s=B1 (1rs)|ν|2 dx + ∫B1 (1rs)|Dν|2 dx.
Let n ? 2 ? s < n. Let u? [H2,s1(B1) ∩ L(B1)]N be a solution of the nonlinear elliptic system
B11rs, i,j=1n, h,K=1N AhKij(x,u) DiuhDK dx=0
, ψ ? ¦C01(B1N, where ¦Aijhk¦ ? L, Aijhk are uniformly continuous functions of their arguments and satisfy:
|η|2 = i=1n, j=1Nij|2 ? i,j=1n, 1rs, h,K=1N AhKijηihηik,?η?RNn
. Then there exists an R1, 0 < R1 < 1, and an α, 0 < α < 1, along with a set Ω ? B1 such that (1) Hn ? 2(Ω) = 0, (2) Ω does not contain the origin; Ω does not contain BR1, (3) B1 ? Ω is open, (4) u is Lipα(B1 ? Ω); u is LipαBR1.  相似文献   

15.
For Hp, 1 ? p < ∞, composition operators C?, defined by C?(?) = ? ° ? for ? ? Hp, ? analytic on D = {z ¦ ¦ z ¦ < 1} are considered, and their spectra determined in the case where ? is analytic on an open region containing D?.  相似文献   

16.
Let V denote a finite dimensional vector space over a field K of characteristic 0, let Tn(V) denote the vector space whose elements are the K-valued n-linear functions on V, and let Sn(V) denote the subspace of Tn(V) whose members are the fully symmetric members of Tn(V). If Ln denotes the symmetric group on {1,2,…,n} then we define the projection PL : Tn(V) → Sn(V) by the formula (n!)?1Σσ ? Ln Pσ, where Pσ : Tn(V) → Tn(V) is defined so that Pσ(A)(y1,y2,…,yn = A(yσ(1),yσ(2),…,yσ(n)) for each A?Tn(V) and yi?V, 1 ? i ? n. If xi ? V1, 1 ? i ? n, then x1?x2? … ?xn denotes the member of Tn(V) such that (x1?x2· ? ? ?xn)(y1,y2,…,yn) = Пni=1xi(yi) for each y1 ,2,…,yn in V, and x1·x2xn denotes PL(x1?x2? … ?xn). If B? Sn(V) and there exists x i ? V1, 1 ? i ? n, such that B = x1·x2xn, then B is said to be decomposable. We present two sets of necessary and sufficient conditions for a member B of Sn(V) to be decomposable. One of these sets is valid for an arbitrary field of characteristic zero, while the other requires that K = R or C.  相似文献   

17.
This paper presents a demonstrably convergent method of feasible directions for solving the problem min{φ(ξ)| gi(ξ)?0i=1,2,…,m}, which approximates, adaptively, both φ(x) and ▽φ(x). These approximations are necessitated by the fact that in certain problems, such as when φ(x) = max{f(x, y) ¦ y ? Ωy}, a precise evaluation of φ(x) and ▽φ(x) is extremely costly. The adaptive procedure progressively refines the precision of the approximations as an optimum is approached and as a result should be much more efficient than fixed precision algorithms.It is outlined how this new algorithm can be used for solving problems of the form miny ? Ωxmaxy ? Ωyf(x, y) under the assumption that Ωmξ={x|gi(x)?0, j=1,…,s} ∩Rn, Ωy={y|ζi(y)?0, i-1,…,t} ∩ Rm, with f, gj, ζi continuously differentiable, f(x, ·) concave, ζi convex for i = 1,…, t, and Ωx, Ωy compact.  相似文献   

18.
Let B be the open unit ball of Cn, n > 1. Let I (for “inner”) be the set of all u ? H °(B) that have ¦u¦ = 1 a.e. on the boundary S of B. Aleksandrov proved recently that there exist nonconstant u ? I. This paper strengthens his basic theorem and provides further information about I and the algebra Q generated by I. Let XY be the finite linear span of products xy, x ? X, y ? Y, and let ¦X¦ be the norm closure, in L = L(S), of X. Some results: set I is dense in the unit ball of H(B) in the compact-open topology. On S, Q?Q is weak1-dense in L, ¦Q? does not contain H, C(S) ?¦Q?H¦ ≠ ¦H?H¦ ≠ L. (When n = 1, ¦Q¦ = Hand ¦Q?Q¦ = L.) Every unimodular ? ? L is a pointwise limit a.e. of products uv?, u ? I, ν ? I. The zeros of every ? ? 0 in the ball algebra (but not of every H-function) can be matched by those of some u ? I, as can any finite number of derivatives at 0 if ∥?∥ < 1. However, ?u cannot be bounded in B if u ? I is non-constant.  相似文献   

19.
In this paper, the problem of phase reconstruction from magnitude of multidimensional band-limited functions is considered. It is shown that any irreducible band-limited function f(z1…,zn), zi ? C, i=1, …, n, is uniquely determined from the magnitude of f(x1…,xn): | f(x1…,xn)|, xi ? R, i=1,…, n, except for (1) linear shifts: i(α1z1+…+αn2n+β), β, αi?R, i=1,…, n; and (2) conjugation: f1(z11,…,zn1).  相似文献   

20.
Let m and vt, 0 ? t ? 2π be measures on T = [0, 2π] with m smooth. Consider the direct integral H = ⊕L2(vt) dm(t) and the operator (L?)(t, λ) = e?iλ?(t, λ) ? 2e?iλtT ?(s, x) e(s, t) dvs(x) dm(s) on H, where e(s, t) = exp ∫stTdvλ(θ) dm(λ). Let μt be the measure defined by T?(x) dμt(x) = ∫0tT ?(x) dvs dm(s) for all continuous ?, and let ?t(z) = exp[?∫ (e + z)(e ? z)?1t(gq)]. Call {vt} regular iff for all t, ¦?t(e)¦ = ¦?(e for 1 a.e.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号