首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, we study the finite element methods for distributed optimal control problems governed by the biharmonic operator. Motivated from reducing the regularity of solution space, we use the decoupled mixed element method which was used to approximate the solution of biharmonic equation to solve the fourth order optimal control problems. Two finite element schemes, i.e., Lagrange conforming element combined with full control discretization and the nonconforming Crouzeix-Raviart element combined with variational control discretization, are used to discretize the decoupled optimal control system. The corresponding a priori error estimates are derived under appropriate norms which are then verified by extensive numerical experiments.  相似文献   

2.
In the present paper, superconvergence of second order, after an appropriate postprocessing, is achieved for three dimensional first order cuboid Morley elements of biharmonic equations. The analysis is dependent on superconvergence of second order for the consistency error and a corrected canonical interpolation operator, which help to establish supercloseness of second order for the corrected canonical interpolation. Then the final superconvergence is derived by a standard postprocessing. For first order nonconforming finite element methods of three dimensional fourth order elliptic problems, it is the first time that full superconvergence of second order is obtained without an extra boundary condition imposed on exact solutions. It is also the first time that superconvergence is established for nonconforming finite element methods of three dimensional fourth order elliptic problems. Numerical results are presented to demonstrate the validity of the theoretical results.  相似文献   

3.
This paper presents a hybrid multi-objective model that combines integer programming (IP) and variable neighbourhood search (VNS) to deal with highly-constrained nurse rostering problems in modern hospital environments. An IP is first used to solve the subproblem which includes the full set of hard constraints and a subset of soft constrains. A basic VNS then follows as a postprocessing procedure to further improve the IP’s resulting solutions. The satisfaction of the excluded constraints from the preceding IP model is the major focus of the VNS. Very promising results are reported compared with a commercial genetic algorithm and a hybrid VNS approach on real instances arising in a Dutch hospital. The comparison results demonstrate that our hybrid approach combines the advantages of both the IP and the VNS to beat other approaches in solving this type of problems. We also believe that the proposed methodology can be applied to other resource allocation problems with a large number of constraints.  相似文献   

4.
One decoupling method for multiphysics, multiscale, multidomain applications involves partitioning the problem via explicit time discretizations in the coupling terms. Specialized, problem-specific techniques are needed for the resulting partitioned methods to avoid time step restrictions which make long time calculations costly. This report studies unconditionally stable, uncoupled time stepping methods for a model problem sharing mathematical structure akin to the coupled atmosphere-ocean system. Three decoupled time stepping algorithms are introduced and their stability and consistency are rigorously examined. Numerical experiments are performed that study their stability and convergence properties.  相似文献   

5.
We present a new method for the analysis of electromagnetic scattering from homogeneous penetrable bodies. Our approach is based on a reformulation of the governing Maxwell equations in terms of two uncoupled vector Helmholtz systems: one for the electric field and one for the magnetic field. This permits the derivation of resonance-free Fredholm equations of the second kind that are stable at all frequencies, insensitive to the genus of the scatterers, and invertible for all passive materials including those with negative permittivities or permeabilities. We refer to these as decoupled field integral equations.  相似文献   

6.
We consider a strongly heterogeneous medium saturated by an incompressible viscous fluid as it appears in geomechanical modeling.This poroelasticity problem suffers from rapidly oscillating material parameters,which calls for a thorough numerical treatment.In this paper,we propose a method based on the local orthogonal decomposition technique and motivated by a similar approach used for linear thermoelasticity.Therein,local corrector problems are constructed in line with the static equations,whereas we propose to consider the full system.This allows to benefit from the given saddle point structure and results in two decoupled corrector problems for the displacement and the pressure.We prove the optimal first-order convergence of this method and verify the result by numerical experiments.  相似文献   

7.
Summary The Schwarz Alternating Method can be used to solve elliptic boundary value problems on domains which consist of two or more overlapping subdomains. The solution is approximated by an infinite sequence of functions which results from solving a sequence of elliptic boundary value problems in each subdomain. In this paper, proofs of convergence of some Schwarz Alternating Methods for nonlinear elliptic problems which are known to have solutions by the monotone method (also known as the method of subsolutions and supersolutions) are given. In particular, an additive Schwarz method for scalar as well some coupled nonlinear PDEs are shown to converge to some solution on finitely many subdomains, even when multiple solutions are possible. In the coupled system case, each subdomain PDE is linear, decoupled and can be solved concurrently with other subdomain PDEs. These results are applicable to several models in population biology. This work was in part supported by a grant from the RGC of HKSAR, China (HKUST6171/99P)  相似文献   

8.
The Schwarz alternating method can be used to solve elliptic boundary value problems on domains which consist of two or more overlapping subdomains. The solution is approximated by an infinite sequence of functions which results from solving a sequence of elliptic boundary value problems in each of the subdomains. The full potential equation is derived from the Navier–Stokes equations assuming the fluid is compressible, inviscid, irrotational and isentropic. It is being used by the aircraft industry to model flow over an airfoil or even an entire aircraft. This paper shows that the additive and multiplicative versions of the Schwarz alternating method, when applied to the full potential equation in three dimensions, converge to the true solution geometrically. The assumptions are that the initial guess and the true solution are everywhere subsonic. We use the convergence proof by Tai and Xu and modify it for certain closed convex subsets.  相似文献   

9.
This paper introduces a kind of multigrid finite element method for the coupled semilinear elliptic equations. Instead of the common way of directly solving the coupled semilinear elliptic problems on some fine spaces, the presented method transforms the solution of the coupled semilinear elliptic problem into a series of solutions of the corresponding decoupled linear boundary value problems on the sequence of multilevel finite element spaces and some coupled semilinear elliptic problems on a very low dimensional space. The decoupled linearized boundary value problems can be solved by some multigrid iterations efficiently. The optimal error estimate and optimal computational work are proved theoretically and demonstrated numerically. Moreover, the requirement of bounded second‐order derivatives of the nonlinear term in the existing multigrid method is reduced to a Lipschitz continuous condition in the proposed method.  相似文献   

10.
We introduce some ways to compute the lower and upper bounds of the Laplace eigenvalue problem.By using the special nonconforming finite elements,i.e.,enriched Crouzeix-Raviart element and extended Q1ro t,we get the lower bound of the eigenvalue.Additionally,we use conforming finite elements to do the postprocessing to get the upper bound of the eigenvalue,which only needs to solve the corresponding source problems and a small eigenvalue problem if higher order postprocessing method is implemented.Thus,we can obtain the lower and upper bounds of the eigenvalues simultaneously by solving eigenvalue problem only once.Some numerical results are also presented to demonstrate our theoretical analysis.  相似文献   

11.
This paper presents a general decoupled method for reliability-based geotechnical design that takes into account the spatial variability of soil properties. In this method, reliability analyses that require a lot of computational resources are decoupled from the optimization procedure by approximating the failure probability function globally. Failure samples are iteratively generated over the entire design space so that their global distribution information can be extracted to construct the failure probability function. The method is computationally efficient, is flexible to implement, and is well suited for geotechnical problems that may involve sophisticated models. A design example of two-dimensional deep excavation against basal heave is discussed for Singapore marine clay where the density and normalized undrained shear strength of soil mass are modeled as random fields. Results demonstrate that the proposed method works well in practice and is advantageous over the coupled or locally decoupled reliability-based geotechnical design methods.  相似文献   

12.
Two‐grid variational multiscale (VMS) algorithms for the incompressible Navier‐Stokes equations with friction boundary conditions are presented in this article. First, one‐grid VMS algorithm is used to solve this problem and some error estimates are derived. Then, two‐grid VMS algorithms are proposed and analyzed. The algorithms consist of nonlinear problem on coarse grid and linearized problem (Stokes problem or Oseen problem) on fine grid. Moreover, the stability and convergence of the present algorithms are established. Finally, Numerical results are shown to confirm the theoretical analysis. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 546–569, 2017  相似文献   

13.
In this work, we consider random elliptic interface problems, namely, the media in elliptic equations have both randomness and interfaces. A Galerkin method using bi-orthogonal polynomials is used to convert the random problem into an uncoupled system of deterministic interface problems. A principle on how to choose the orders of the approximated polynomial spaces is given based on the sensitivity analysis in random spaces, with which the total degree of freedom can be significantly reduced. Then immersed finite element methods are introduced to solve the resulting system. Convergence results are given both theoretically and numerically.  相似文献   

14.
In this paper we propose and analyze a stochastic collocation method for solving the second order wave equation with a random wave speed and subjected to deterministic boundary and initial conditions. The speed is piecewise smooth in the physical space and depends on a finite number of random variables. The numerical scheme consists of a finite difference or finite element method in the physical space and a collocation in the zeros of suitable tensor product orthogonal polynomials (Gauss points) in the probability space. This approach leads to the solution of uncoupled deterministic problems as in the Monte Carlo method. We consider both full and sparse tensor product spaces of orthogonal polynomials. We provide a rigorous convergence analysis and demonstrate different types of convergence of the probability error with respect to the number of collocation points for full and sparse tensor product spaces and under some regularity assumptions on the data. In particular, we show that, unlike in elliptic and parabolic problems, the solution to hyperbolic problems is not in general analytic with respect to the random variables. Therefore, the rate of convergence may only be algebraic. An exponential/fast rate of convergence is still possible for some quantities of interest and for the wave solution with particular types of data. We present numerical examples, which confirm the analysis and show that the collocation method is a valid alternative to the more traditional Monte Carlo method for this class of problems.  相似文献   

15.
0 引言 多孔介质二相驱动问题的数学模型是由压力方程与浓度方程组成的偏微分方程组的初边值问题.关于该问题的数值解问题,已有大量的文献.为了得到最优的L~2-模误差估计,好多方法用混合元方法解压力方程.我们知道,混合元法得到的方程组系数矩阵是非正定的,从而解混合元比解标准元要困难得多,虽然许多人研究了混合元方法的求解问题,但到目前为止,还没有看到令人满意的好的算法.为了避开对混合元的求解,著名学者T.F.Russell考虑了用标准有限元方法解压力方程,用特征有限元方法解浓度方程的求解方法及其迭代解法,对只有分子扩散的二相驱动问题得到了最优的L~2模误差估计,对有机械弥散的一般二相驱动问题得不到最优的L~2模误差估计,同时在收敛性证明中要求压力有限元空间的指数至少是二.  相似文献   

16.
This paper extends the full convergence of the steepest descent method with a generalized Armijo search and a proximal regularization to solve minimization problems with quasiconvex objective functions on complete Riemannian manifolds. Previous convergence results are obtained as particular cases and some examples in non-Euclidian spaces are given. In particular, our approach can be used to solve constrained minimization problems with nonconvex objective functions in Euclidian spaces if the set of constraints is a Riemannian manifold and the objective function is quasiconvex in this manifold.  相似文献   

17.
In this work, we consider random elliptic interface problems, namely, the media in elliptic equations have both randomness and interfaces. A Galerkin method using bi-orthogonal polynomials is used to convert the random problem into an uncoupled system of deterministic interface problems. A principle on how to choose the orders of the approximated polynomial spaces is given based on the sensitivity analysis in random spaces, with which the total degree of freedom can be significantly reduced. Then immersed finite element methods are introduced to solve the resulting system. Convergence results are given both theoretically and numerically.  相似文献   

18.
This paper presents a numerical analysis of the method of factorization for elliptic boundary value problems. A second-order elliptic boundary value problem is transformed into a decoupled system of first-order initial value problems. This elaborates the decoupled system’s occupying operator, the solution of the problem, and the affine part of the operator. The solution of the problem is thus obtained by solving the factorized system using the finite-element method. A comparative study is made with the help of an example that illustrates many of its properties.  相似文献   

19.
This paper proposes an approach for the robust averaged control of random vibrations for the Bernoulli–Euler beam equation under uncertainty in the flexural stiffness and in the initial conditions. The problem is formulated in the framework of optimal control theory and provides a functional setting, which is so general as to include different types of random variables and second-order random fields as sources of uncertainty. The second-order statistical moment of the random system response at the control time is incorporated in the cost functional as a measure of robustness. The numerical resolution method combines a classical descent method with an adaptive anisotropic stochastic collocation method for the numerical approximation of the statistics of interest. The direct and adjoint stochastic systems are uncoupled, which permits to exploit parallel computing architectures to solve the set of deterministic problem that arise from the stochastic collocation method. As a result, problems with a relative large number of random variables can be solved with a reasonable computational cost. Two numerical experiments illustrate both the performance of the proposed method and the significant differences that may occur when uncertainty is incorporated in this type of control problems.  相似文献   

20.
We consider the construction of locally conservative fluxes by means of a simple postprocessing technique obtained from the finite element solutions of advection diffusion equations. It is known that a naive calculation of fluxes from these solutions yields nonconservative fluxes. We consider two finite element methods: the usual continuous Galerkin finite element method for solving nondominating advection diffusion equations and the streamline upwind/Petrov‐Galerkin method for solving advection dominated problems. We then describe the postprocessing technique for constructing conservative fluxes from the numerical solutions of the general variational formulation. The postprocessing technique requires solving an auxiliary Neumann boundary value problem on each element independently and it produces a locally conservative flux on a vertex centered dual mesh relative to the finite element mesh. We provide a convergence analysis for the postprocessing technique. Performance of the technique and the convergence behavior are demonstrated through numerical examples including a set of test problems for advection diffusion equations, advection dominated equations, and drift‐diffusion equations. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 1971–1994, 2015  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号