首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 833 毫秒
1.
In this paper, uniaxial compression tests were carried out on a series of composite rock specimens with different dip angles, which were made from two types of rock-like material with different strength. The acoustic emission technique was used to monitor the acoustic signal characteristics of composite rock specimens during the entire loading process. At the same time, an optical non-contact 3 D digital image correlation technique was used to study the evolution of axial strain field and the maximal strain field before and after the peak strength at different stress levels during the loading process. The effect of bedding plane inclination on the deformation and strength during uniaxial loading was analyzed. The methods of solving the elastic constants of hard and weak rock were described. The damage evolution process, deformation and failure mechanism, and failure mode during uniaxial loading were fully determined. The experimental results show that the θ = 0?–45?specimens had obvious plastic deformation during loading, and the brittleness of the θ = 60?–90?specimens gradually increased during the loading process. When the anisotropic angle θincreased from 0?to 90?, the peak strength, peak strain,and apparent elastic modulus all decreased initially and then increased. The failure mode of the composite rock specimen during uniaxial loading can be divided into three categories:tensile fracture across the discontinuities(θ = 0?–30?), slid-ing failure along the discontinuities(θ = 45?–75?), and tensile-split along the discontinuities(θ = 90?). The axial strain of the weak and hard rock layers in the composite rock specimen during the loading process was significantly different from that of the θ = 0?–45?specimens and was almost the same as that of the θ = 60?–90?specimens. As for the strain localization highlighted in the maximum principal strain field, the θ = 0?–30?specimens appeared in the rock matrix approximately parallel to the loading direction,while in the θ = 45?–90?specimens it appeared at the hard and weak rock layer interface.  相似文献   

2.
We consider a family of linearly viscoelastic shells with thickness \(2\varepsilon\), clamped along their entire lateral face, all having the same middle surface \(S=\boldsymbol{\theta}(\bar{\omega})\subset \mathbb{R}^{3}\), where \(\omega\subset\mathbb{R}^{2}\) is a bounded and connected open set with a Lipschitz-continuous boundary \(\gamma\). We make an essential geometrical assumption on the middle surface \(S\), which is satisfied if \(\gamma\) and \(\boldsymbol{\theta}\) are smooth enough and \(S\) is uniformly elliptic. We show that, if the applied body force density is \(O(1)\) with respect to \(\varepsilon\) and surface tractions density is \(O(\varepsilon)\), the solution of the scaled variational problem in curvilinear coordinates, \(\boldsymbol{u}( \varepsilon)\), defined over the fixed domain \(\varOmega=\omega\times (-1,1)\) for each \(t\in[0,T]\), converges to a limit \(\boldsymbol{u}\) with \(u_{\alpha}(\varepsilon)\rightarrow u_{\alpha}\) in \(W^{1,2}(0,T,H ^{1}(\varOmega))\) and \(u_{3}(\varepsilon)\rightarrow u_{3}\) in \(W^{1,2}(0,T,L^{2}(\varOmega))\) as \(\varepsilon\to0\). Moreover, we prove that this limit is independent of the transverse variable. Furthermore, the average \(\bar{\boldsymbol{u}}= \frac{1}{2}\int_{-1}^{1} \boldsymbol{u}dx_{3}\), which belongs to the space \(W^{1,2}(0,T, V_{M}( \omega))\), where
$$V_{M}(\omega)=H^{1}_{0}(\omega)\times H^{1}_{0}(\omega)\times L ^{2}(\omega), $$
satisfies what we have identified as (scaled) two-dimensional equations of a viscoelastic membrane elliptic shell, which includes a long-term memory that takes into account previous deformations. We finally provide convergence results which justify those equations.
  相似文献   

3.
We prove the uniqueness of positive ground state solutions of the problem \({ {\frac {d^{2}u}{dr^{2}}} + {\frac {n-1}{r}}{\frac {du}{dr}} + u \ln(|u|) = 0}\), \({u(r) > 0~\forall r \ge 0}\), and \({(u(r),u'(r)) \to (0, 0)}\) as \({r \to \infty}\). This equation is derived from the logarithmic Schrödinger equation \({{\rm i}\psi_{t} = {\Delta} \psi + u \ln \left(|u|^{2}\right)}\), and also from the classical equation \({{\frac {\partial u}{\partial t}} = {\Delta} u +u \left(|u|^{p-1}\right) -u}\). For each \({n \ge 1}\), a positive ground state solution is \({ u_{0}(r) = \exp \left(-{\frac{r^2}{4}} + {\frac{n}{2}}\right),~0 \le r < \infty}\). We combine \({u_{0}(r)}\) with energy estimates and associated Ricatti equation estimates to prove that, for each \({n \in \left[1, 9 \right]}\), \({u_{0}(r)}\) is the only positive ground state. We also investigate the stability of \({u_{0}(r)}\). Several open problems are stated.  相似文献   

4.
A large number (1253) of high-quality streaming potential coefficient (\(C_\mathrm{sp})\) measurements have been carried out on Berea, Boise, Fontainebleau, and Lochaline sandstones (the latter two including both detrital and authigenic overgrowth forms), as a function of pore fluid salinity (\(C_\mathrm{f})\) and rock microstructure. All samples were saturated with fully equilibrated aqueous solutions of NaCl (10\(^{-5}\) and 4.5 mol/dm\(^{3})\) upon which accurate measurements of their electrical conductivity and pH were taken. These \(C_\mathrm{sp}\) measurements represent about a fivefold increase in streaming potential data available in the literature, are consistent with the pre-existing 266 measurements, and have lower experimental uncertainties. The \(C_\mathrm{sp}\) measurements follow a pH-sensitive power law behaviour with respect to \(C_\mathrm{f}\) at medium salinities (\(C_\mathrm{sp} =-\,1.44\times 10^{-9} C_\mathrm{f}^{-\,1.127} \), units: V/Pa and mol/dm\(^{3})\) and show the effect of rock microstructure on the low salinity \(C_\mathrm{sp}\) clearly, producing a smaller decrease in \(C_\mathrm{sp}\) per decade reduction in \(C_\mathrm{f}\) for samples with (i) lower porosity, (ii) larger cementation exponents, (iii) smaller grain sizes (and hence pore and pore throat sizes), and (iv) larger surface conduction. The \(C_\mathrm{sp}\) measurements include 313 made at \(C_\mathrm{f} > 1\) mol/dm\(^{3}\), which confirm the limiting high salinity \(C_\mathrm{sp}\) behaviour noted by Vinogradov et al., which has been ascribed to the attainment of maximum charge density in the electrical double layer occurring when the Debye length approximates to the size of the hydrated metal ion. The zeta potential (\(\zeta \)) was calculated from each \(C_\mathrm{sp}\) measurement. It was found that \(\zeta \) is highly sensitive to pH but not sensitive to rock microstructure. It exhibits a pH-dependent logarithmic behaviour with respect to \(C_\mathrm{f}\) at low to medium salinities (\(\zeta =0.01133 \log _{10} \left( {C_\mathrm{f} } \right) +0.003505\), units: V and mol/dm\(^{3})\) and a limiting zeta potential (zeta potential offset) at high salinities of \({\zeta }_\mathrm{o} = -\,17.36\pm 5.11\) mV in the pH range 6–8, which is also pH dependent. The sensitivity of both \(C_\mathrm{sp}\) and \(\zeta \) to pH and of \(C_\mathrm{sp}\) to rock microstructure indicates that \(C_\mathrm{sp}\) and \(\zeta \) measurements can only be interpreted together with accurate and equilibrated measurements of pore fluid conductivity and pH and supporting microstructural and surface conduction measurements for each sample.  相似文献   

5.
In this paper, we consider the perturbed KdV equation with Fourier multiplier
$$\begin{aligned} u_{t} =- u_{xxx} + \big (M_{\xi }u+u^3 \big )_{x},\quad u(t,x+2\pi )=u(t,x),\quad \int _0^{2\pi }u(t,x)dx=0, \end{aligned}$$
with analytic data of size \(\varepsilon \). We prove that the equation admits a Whitney smooth family of small amplitude, real analytic quasi-periodic solutions with \(\tilde{J}\) Diophantine frequencies, where the order of \(\tilde{J}\) is \(O(\frac{1}{\varepsilon })\). The proof is based on a conserved quantity \(\int _0^{2\pi } u^2 dx\), Töplitz–Lipschitz property and an abstract infinite dimensional KAM theorem. By taking advantage of the conserved quantity \(\int _0^{2\pi } u^2 dx\) and Töplitz–Lipschitz property, our normal form part is independent of angle variables in spite of the unbounded perturbation.
  相似文献   

6.
Consider a weakly nonlinear CGL equation on the torus \(\mathbb {T}^d\):
$$\begin{aligned} u_t+i\Delta u=\epsilon [\mu (-1)^{m-1}\Delta ^{m} u+b|u|^{2p}u+ ic|u|^{2q}u]. \end{aligned}$$
(*)
Here \(u=u(t,x)\), \(x\in \mathbb {T}^d\), \(0<\epsilon <<1\), \(\mu \geqslant 0\), \(b,c\in \mathbb {R}\) and \(m,p,q\in \mathbb {N}\). Define \(I(u)=(I_{\mathbf {k}},\mathbf {k}\in \mathbb {Z}^d)\), where \(I_{\mathbf {k}}=v_{\mathbf {k}}\bar{v}_{\mathbf {k}}/2\) and \(v_{\mathbf {k}}\), \(\mathbf {k}\in \mathbb {Z}^d\), are the Fourier coefficients of the function \(u\) we give. Assume that the equation \((*)\) is well posed on time intervals of order \(\epsilon ^{-1}\) and its solutions have there a-priori bounds, independent of the small parameter. Let \(u(t,x)\) solve the equation \((*)\). If \(\epsilon \) is small enough, then for \(t\lesssim {\epsilon ^{-1}}\), the quantity \(I(u(t,x))\) can be well described by solutions of an effective equation:
$$\begin{aligned} u_t=\epsilon [\mu (-1)^{m-1}\Delta ^m u+ F(u)], \end{aligned}$$
where the term \(F(u)\) can be constructed through a kind of resonant averaging of the nonlinearity \(b|u|^{2p}+ ic|u|^{2q}u\).
  相似文献   

7.
We consider a family of linearly elastic shells with thickness \(2\varepsilon\) (where \(\varepsilon\) is a small parameter). The shells are clamped along a portion of their lateral face, all having the same middle surface \(S\), and may enter in contact with a rigid foundation along the bottom face.We are interested in studying the limit behavior of both the three-dimensional problems, given in curvilinear coordinates, and their solutions (displacements \(\boldsymbol{u}^{\varepsilon}\) of covariant components \(u_{i}^{\varepsilon}\)) when \(\varepsilon\) tends to zero. To do that, we use asymptotic analysis methods. On one hand, we find that if the applied body force density is \(O(1)\) with respect to \(\varepsilon\) and surface tractions density is \(O(\varepsilon)\), a suitable approximation of the variational formulation of the contact problem is a two-dimensional variational inequality which can be identified as the variational formulation of the obstacle problem for an elastic membrane. On the other hand, if the applied body force density is \(O(\varepsilon^{2})\) and surface tractions density is \(O(\varepsilon^{3})\), the corresponding approximation is a different two-dimensional inequality which can be identified as the variational formulation of the obstacle problem for an elastic flexural shell. We finally discuss the existence and uniqueness of solution for the limit two-dimensional variational problems found.  相似文献   

8.
In this article, we investigate the initial and boundary blow-up problem for the \(p\)-Laplacian parabolic equation \(u_t-\Delta _p u=-b(x,t)f(u)\) over a smooth bounded domain \(\Omega \) of \(\mathbb {R}^N\) with \(N\ge 2\), where \(\Delta _pu=\mathrm{div}(|\nabla u|^{p-2}\nabla u)\) with \(p>1\), and \(f(u)\) is a function of regular variation at infinity. We study the existence and uniqueness of positive solutions, and their asymptotic behaviors near the parabolic boundary.  相似文献   

9.
We study the long time behavior of the solutions to the 2D stochastic quasi-geostrophic equation on \({\mathbb {T}}^2\) driven by additive noise and real linear multiplicative noise in the subcritical case (i.e. \(\alpha >\frac{1}{2}\)) by proving the existence of a random attractor. The key point for the proof is the exponential decay of the \(L^p\)-norm and a boot-strapping argument. The upper semicontinuity of random attractors is also established. Moreover, if the viscosity constant is large enough, the system has a trivial random attractor.  相似文献   

10.
We study the Neumann boundary value problem for the second order ODE
$$\begin{aligned} u^{\prime \prime } + (a^+(t)-\mu a^-(t))g(u) = 0, \qquad t \in [0,T], \end{aligned}$$
(1)
where \(g \in {\mathcal {C}}^1({\mathbb {R}})\) is a bounded function of constant sign, \(a^+,a^-: [0,T] \rightarrow {\mathbb {R}}^+\) are the positive/negative part of a sign-changing weight \(a(t)\) and \(\mu > 0\) is a real parameter. Depending on the sign of \(g^{\prime }(u)\) at infinity, we find existence/multiplicity of solutions for \(\mu \) in a “small” interval near the value
$$\begin{aligned} \mu _c = \frac{\int _0^T a^+(t) \, dt}{\int _0^T a^-(t) \, dt}\,. \end{aligned}$$
The proof exploits a change of variables, transforming the sign-indefinite Eq. (1) into a forced perturbation of an autonomous planar system, and a shooting argument. Nonexistence results for \(\mu \rightarrow 0^+\) and \(\mu \rightarrow +\infty \) are given, as well.
  相似文献   

11.
This study investigated the dynamic displacement and dissolution of \(\hbox {CO}_{2}\) in porous media at 313 K and 6/8 MPa. Gaseous (\(\hbox {gCO}_{2}\)) at 6 MPa and supercritical \(\hbox {CO}_{2 }(\hbox {scCO}_{2}) \) at 8 MPa were injected downward into a glass bead pack at different flow rates, following upwards brine injection. The processes occurring during \(\hbox {CO}_{2}\) drainage and brine imbibition were visualized using magnetic resonance imaging. The drainage flow fronts were strongly influenced by the flow rates, resulting in different gas distributions. However, brine imbibition proceeded as a vertical compacted front due to the strong effect of gravity. Additionally, the effects of flow rate on distribution and saturation were analyzed. Then, the front movement of \(\hbox {CO}_{2}\) dissolution was visualized along different paths after imbibition. The determined \(\hbox {CO}_{2}\) concentrations implied that little \(\hbox {scCO}_{2}\) dissolved in brine after imbibition. The dissolution rate was from \(10^{-8}\) to \(10^{-9}\, \hbox {kg}\, \hbox {m}^{-3} \, \hbox {s}^{-1}\) and from \(10^{-6}\) to \(10^{-8}\, \hbox {kg}\, \hbox {m}^{-3} \, \hbox {s}^{-1}\) for \(\hbox {gCO}_{2}\) at 6 MPa and \(\hbox {scCO}_{2 }\) at 8 MPa, respectively. The total time for the \(\hbox {scCO}_{2}\) dissolution was short, indicating fast mass transfer between the \(\hbox {CO}_{2}\) and brine. Injection of \(\hbox {CO}_{2}\) under supercritical conditions resulted in a quick establishment of a steady state with high storage safety.  相似文献   

12.
We consider a Riemann problem for the shallow water system \(u_{t} +\big (v+\textstyle \frac{1}{2}u^{2}\big )_{x}=0\), \(v_{t}+\big (u+uv\big )_{x}=0\) and evaluate all singular solutions of the form \(u(x,t)=l(t)+b(t)H\big (x-\gamma (t)\big )+a(t)\delta \big (x-\gamma (t)\big )\), \(v(x,t)=k(t)+c(t)H\big (x-\gamma (t)\big )\), where \(l,b,a,k,c,\gamma :\mathbb {R}\rightarrow \mathbb {R}\) are \(C^{1}\)-functions of time t, H is the Heaviside function, and \(\delta \) stands for the Dirac measure with support at the origin. A product of distributions, not constructed by approximation processes, is used to define a solution concept, that is a consistent extension of the classical solution concept. Results showing the advantage of this framework are briefly presented in the introduction.  相似文献   

13.
We consider the elliptic equation \(-\Delta u +u =0\) with nonlinear boundary condition \(\frac{\partial u}{\partial n}= \lambda u + g(\lambda ,x,u), \) where \(\frac{g(\lambda ,x,s)}{s} \rightarrow 0, \hbox { as }|s|\rightarrow \infty \) and g is oscillatory. We provide sufficient conditions on g for the existence of unbounded sequences of stable solutions, unstable solutions, and turning points, even in the absence of resonant solutions.  相似文献   

14.
This study considers the quasilinear elliptic equation with a damping term,
$$\begin{aligned} \text {div}(D(u)\nabla u) + \frac{k(|{\mathbf {x}}|)}{|{\mathbf {x}}|}\,{\mathbf {x}}\cdot (D(u)\nabla u) + \omega ^2\big (|u|^{p-2}u + |u|^{q-2}u\big ) = 0, \end{aligned}$$
where \({\mathbf {x}}\) is an N-dimensional vector in \(\big \{{\mathbf {x}} \in \mathbb {R}^N: |{\mathbf {x}}| \ge \alpha \big \}\) for some \(\alpha > 0\) and \(N \in {\mathbb {N}}\setminus \{1\}\); \(D(u) = |\nabla u|^{p-2} + |\nabla u|^{q-2}\) with \(1 < q \le p\); k is a nonnegative and locally integrable function on \([\alpha ,\infty )\); and \(\omega \) is a positive constant. A necessary and sufficient condition is given for all radially symmetric solutions to converge to zero as \(|{\mathbf {x}}|\rightarrow \infty \). Our necessary and sufficient condition is expressed by an improper integral related to the damping coefficient k. The case that k is a power function is explained in detail.
  相似文献   

15.
In this paper we focused our study on derived from Anosov diffeomorphisms (DA diffeomorphisms ) of the torus \(\mathbb {T}^3,\) it is, an absolute partially hyperbolic diffeomorphism on \(\mathbb {T}^3\) homotopic to a linear Anosov automorphism of the \(\mathbb {T}^3.\) We can prove that if \(f: \mathbb {T}^3 \rightarrow \mathbb {T}^3 \) is a volume preserving DA diffeomorphism homotopic to a linear Anosov A,  such that the center Lyapunov exponent satisfies \(\lambda ^c_f(x) > \lambda ^c_A > 0,\) with x belongs to a positive volume set, then the center foliation of f is non absolutely continuous. We construct a new open class U of non Anosov and volume preserving DA diffeomorphisms, satisfying the property \(\lambda ^c_f(x) > \lambda ^c_A > 0\) for \(m-\)almost everywhere \(x \in \mathbb {T}^3.\) Particularly for every \(f \in U,\) the center foliation of f is non absolutely continuous.  相似文献   

16.
We consider positive classical solutions of
$$\begin{aligned} v_t=(v^{m-1}v_x)_x, \qquad x\in {\mathbb {R}}, \ t>0, \qquad (\star ) \end{aligned}$$
in the super-fast diffusion range \(m<-1\). Our main interest is in smooth positive initial data \(v_0=v(\cdot ,0)\) which decay as \(x\rightarrow +\infty \), but which are possibly unbounded as \(x\rightarrow -\infty \), having in mind monotonically decreasing data as prototypes. It is firstly proved that if \(v_0\) decays sufficiently fast only in one direction by satisfying
$$\begin{aligned} v_0(x) \le cx^{-\beta } \qquad \text{ for } \text{ all } ~x>0 \quad \hbox { with some }\quad \beta >\frac{2}{1-m} \end{aligned}$$
and some \(c>0\), then the so-called proper solution of (\(\star \)) vanishes identically in \({\mathbb {R}}\times (0,\infty )\), and accordingly no positive classical solution exists in any time interval in this case. Complemented by some sufficient criteria for solutions to remain positive either locally or globally in time, this condition for instantaneous extinction is shown to be optimal at least with respect to algebraic decay of the initial data. This partially extends some known nonexistence results for (\(\star \)) (Daskalopoulos and Del Pino in Arch Rat Mech Anal 137(4):363–380, 1997) in that it does not require any knowledge on the behavior of \(v_0(x)\) for \(x<0\). Next focusing on the phenomenon of extinction in finite time, we show that in this respect a mass influx from \(x=-\infty \) can interact with mass loss at \(x=+\infty \) in a nontrivial manner. Namely, we shall detect examples of monotone initial data, with critical decay as \(x\rightarrow +\infty \) and exponential growth as \(x\rightarrow -\infty \), that lead to solutions of (\(\star \)) which become extinct at a finite positive time, but which have empty extinction sets. This is in sharp contrast to known extinction mechanisms which are such that the corresponding extinction sets coincide with all of \({\mathbb {R}}\).
  相似文献   

17.
In this paper we show a striking contrast in the symmetries of equilibria and extremisers of the total elastic energy of a hyperelastic incompressible annulus subject to pure displacement boundary conditions. Indeed upon considering the equilibrium equations, here, the nonlinear second order elliptic system formulated for the deformation \(u=(u_{1}, \ldots, u_{N})\):
$$ {\mathbb{E}} {\mathbb{L}}[u, {\mathbf {X}}] = \left \{ \textstyle\begin{array}{l@{\quad}l} \Delta u = \operatorname{div}(\mathscr{P} (x) \operatorname{cof} \nabla u) & \textrm{in }{\mathbf {X}},\\ \det\nabla u = 1 & \textrm{in }{\mathbf {X}},\\ u \equiv\varphi& \textrm{on }\partial{\mathbf {X}}, \end{array}\displaystyle \right . $$
where \({\mathbf {X}}\) is a finite, open, symmetric \(N\)-annulus (with \(N \ge2\)), \(\mathscr{P}=\mathscr{P}(x)\) is an unknown hydrostatic pressure field and \(\varphi\) is the identity mapping, we prove that, despite the inherent rotational symmetry in the system, when \(N=3\), the problem possesses no non-trivial symmetric equilibria whereas in sharp contrast, when \(N=2\), the problem possesses an infinite family of symmetric and topologically distinct equilibria. We extend and prove the counterparts of these results in higher dimensions by way of showing that a similar dichotomy persists between all odd vs. even dimensions \(N \ge4\) and discuss a number of closely related issues.
  相似文献   

18.
We study the asymptotic behavior of the motion of an ideal incompressible fluid in a perforated domain. The porous medium is composed of inclusions of size \({\varepsilon}\) separated by distances \({d_{\varepsilon}}\) and the fluid fills the exterior. If the inclusions are distributed on the unit square, the asymptotic behavior depends on the limit of \({\frac{d_{\varepsilon}}\varepsilon}\) when \({\varepsilon}\) goes to zero. If \({\frac{d_{\varepsilon}}\varepsilon \to \infty}\), then the limit motion is not perturbed by the porous medium, namely, we recover the Euler solution in the whole space. If, on the contrary, \({\frac{d_{\varepsilon}}\varepsilon \to 0}\), then the fluid cannot penetrate the porous region, namely, the limit velocity verifies the Euler equations in the exterior of an impermeable square. If the inclusions are distributed on the unit segment then the behavior depends on the geometry of the inclusion: it is determined by the limit of \({\frac{d_{\varepsilon}}{\varepsilon^{2+\frac1\gamma}}}\) where \({\gamma \in (0,\infty]}\) is related to the geometry of the lateral boundaries of the obstacles. If \({\frac{d_{\varepsilon}}{\varepsilon^{2+\frac1\gamma}} \to \infty}\), then the presence of holes is not felt at the limit, whereas an impermeable wall appears if this limit is zero. Therefore, for a distribution in one direction, the critical distance depends on the shape of the inclusions; in particular, it is equal to \({\varepsilon^{3}}\) for balls.  相似文献   

19.
Fused deposition modelling (FDM), a widely used rapid prototyping process, is a promising technique in manufacturing engineering. In this work, a method for characterizing elastic constants of FDM-fabricated materials is proposed. First of all, according to the manufacturing process of FDM, orthotropic constitutive model is used to describe the mechanical behavior. Then the virtual fields method (VFM) is applied to characterize all the mechanical parameters \((Q_{11}\), \(Q_{22}\), \(Q_{12}\), \(Q_{66})\) using the full-field strain, which is measured by digital image correlation (DIC). Since the principal axis of the FDM-fabricated structure is sometimes unknown due to the complexity of the manufacturing process, a disk in diametrical compression is used as the load configuration so that the loading angle can be changed conveniently. To verify the feasibility of the proposed method, finite element method (FEM) simulation is conducted to obtain the strain field of the disk. The simulation results show that higher accuracy can be achieved when the loading angle is close to \(30^{\circ }\). Finally, a disk fabricated by FDM was used for the experiment. By rotating the disk, several tests with different loading angles were conducted. To determine the position of the principal axis in each test, two groups of parameters \((Q_{11}\), \(Q_{22}\), \(Q_{12}\), \(Q_{66})\) are calculated by two different groups of virtual fields. Then the corresponding loading angle can be determined by minimizing the deviation between two groups of the parameters. After that, the four constants \((Q_{11}\), \(Q_{22}\), \(Q_{12}\), \(Q_{66})\) were determined from the test with an angle of \(27^{\circ }\).  相似文献   

20.
This numerical study describes the eddy emergence and transformations in a slow steady axisymmetric air–water flow, driven by a rotating top disk in a vertical conical container. As water height \(H_{\mathrm{w}}\) and cone half-angle \(\beta \) vary, numerous flow metamorphoses occur. They are investigated for \(\beta =30^{\circ }, 45^{\circ }\), and \(60^{\circ }\). For small \(H_{\mathrm{w}}\), the air flow is multi-cellular with clockwise meridional circulation near the disk. The air flow becomes one cellular as \(H_{\mathrm{w}}\) exceeds a threshold depending on \(\beta \). For all \(\beta \), the water flow has an unbounded number of eddies whose size and strength diminish as the cone apex is approached. As the water level becomes close to the disk, the outmost water eddy with clockwise meridional circulation expands, reaches the interface, and induces a thin layer with anticlockwise circulation in the air. Then this layer expands and occupies the entire air domain. The physical reasons for the flow transformations are provided. The results are of fundamental interest and can be relevant for aerial bioreactors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号