首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Let s 1, ..., s n be arbitrary complex scalars. It is required to construct an n × n normal matrix A such that s i is an eigenvalue of the leading principal submatrix A i , i = 1, 2, ..., n. It is shown that, along with the obvious diagonal solution diag(s 1, ..., s n ), this problem always admits a much more interesting nondiagonal solution A. As a rule, this solution is a dense matrix; with the diagonal solution, it shares the property that each submatrix A i is itself a normal matrix, which implies interesting connections between the spectra of the neighboring submatrices A i and A i + 1.  相似文献   

2.
For a sparse non-singular matrix A, generally A~(-1)is a dense matrix. However, for a class of matrices,A~(-1)can be a matrix with off-diagonal decay properties, i.e., |A_(ij)~(-1)| decays fast to 0 with respect to the increase of a properly defined distance between i and j. Here we consider the off-diagonal decay properties of discretized Green's functions for Schr¨odinger type operators. We provide decay estimates for discretized Green's functions obtained from the finite difference discretization, and from a variant of the pseudo-spectral discretization. The asymptotic decay rate in our estimate is independent of the domain size and of the discretization parameter.We verify the decay estimate with numerical results for one-dimensional Schr¨odinger type operators.  相似文献   

3.
We study the concepts of statistical cluster points and statistical core of a sequence for A λ methods defined by deleting some rows from a nonnegative regular matrix A. We also relate A λ-statistical convergence to A μ-statistical convergence. Finally we give a consistency theorem for A-statistical convergence and deduce a core equality result.  相似文献   

4.
We prove a stability version of a general result that bounds the permanent of a matrix in terms of its operator norm. More specifically, suppose A is an n × n matrix over C (resp. R), and let P denote the set of n × n matrices over C (resp. R) that can be written as a permutation matrix times a unitary diagonal matrix. Then it is known that the permanent of A satisfies |per(A)| ≤ ||A|| n 2 with equality iff A/||A||2P (where ||A||2 is the operator 2-norm of A). We show a stability version of this result asserting that unless A is very close (in a particular sense) to one of these extremal matrices, its permanent is exponentially smaller (as a function of n) than ||A|| n 2. In particular, for any fixed α, β > 0, we show that |per(A)| is exponentially smaller than ||A|| n 2 unless all but at most αn rows contain entries of modulus at least ||A||2(1?β).  相似文献   

5.
Suppose that A is a real symmetric matrix of order n. Denote by mA(0) the nullity of A. For a nonempty subset α of {1, 2,..., n}, let A(α) be the principal submatrix of A obtained from A by deleting the rows and columns indexed by α. When mA(α)(0) = mA(0)+|α|, we call α a P-set of A. It is known that every P-set of A contains at most ?n/2? elements. The graphs of even order for which one can find a matrix attaining this bound are now completely characterized. However, the odd case turned out to be more difficult to tackle. As a first step to the full characterization of these graphs of odd order, we establish some conditions for such graphs G under which there is a real symmetric matrix A whose graph is G and contains a P-set of size (n ? 1)/2.  相似文献   

6.
In this note we consider the homogenization problem for a matrix locally periodic elliptic operator on R d of the form A ε = ?divA(x, x/ε)?. The function A is assumed to be Hölder continuous with exponent s ∈ [0, 1] in the “slow” variable and bounded in the “fast” variable. We construct approximations for (A ε ? μ)?1, including one with a corrector, and for (?Δ) s/2(A ε ? μ)?1 in the operator norm on L 2(R d ) n . For s ≠ 0, we also give estimates of the rates of approximation.  相似文献   

7.
The matrix completion problem is easy to state: let A be a given data matrix in which some entries are unknown. Then, it is needed to assign “appropriate values” to these entries. A common way to solve this problem is to compute a rank-k matrix, B k , that approximates A in a least squares sense. Then, the unknown entries in A attain the values of the corresponding entries in B k . This raises the question of how to determine a suitable matrix rank. The method proposed in this paper attempts to answer this question. It builds a finite sequence of matrices \(B_{k}, k = 1, 2, \dots \), where B k is a rank-k matrix that approximates A in a least squares sense. The computational effort is reduced by using B k-1 as starting point in the computation of B k . The ability of B k to serve as substitute for A is measured with two objective functions: a “training” function that measures the distance between the known part of A and the corresponding part of B k , and a “probe” function that assesses the quality of the imputed entries. Watching the changes in these functions as k increases enables us to find an optimal matrix rank. Numerical experiments illustrate the usefulness of the proposed approach.  相似文献   

8.
Let Mm,n be the set of all m × n real matrices. A matrix A ∈ Mm,n is said to be row-dense if there are no zeros between two nonzero entries for every row of this matrix. We find the structure of linear functions T: Mm,n → Mm,n that preserve or strongly preserve row-dense matrices, i.e., T(A) is row-dense whenever A is row-dense or T(A) is row-dense if and only if A is row-dense, respectively. Similarly, a matrix A ∈ Mn,m is called a column-dense matrix if every column of A is a column-dense vector. At the end, the structure of linear preservers (strong linear preservers) of column-dense matrices is found.  相似文献   

9.
Let ?+ be the semiring of all nonnegative integers and A an m × n matrix over ?+. The rank of A is the smallest k such that A can be factored as an m × k matrix times a k×n matrix. The isolation number of A is the maximum number of nonzero entries in A such that no two are in any row or any column, and no two are in a 2 × 2 submatrix of all nonzero entries. We have that the isolation number of A is a lower bound of the rank of A. For A with isolation number k, we investigate the possible values of the rank of A and the Boolean rank of the support of A. So we obtain that the isolation number and the Boolean rank of the support of a given matrix are the same if and only if the isolation number is 1 or 2 only. We also determine a special type of m×n matrices whose isolation number is m. That is, those matrices are permutationally equivalent to a matrix A whose support contains a submatrix of a sum of the identity matrix and a tournament matrix.  相似文献   

10.
By using the freezing method, we obtain upper and lower estimates for the higher and lower characteristic exponents, respectively, of homogeneous n-dimensional linear differential and difference systems with coefficient matrix A(t) satisfying the condition ||A(t)?A(s)|| ≤ δ|t ? s|α, δ > 0, α > 0, t, s ≥ 0. We also prove analogs of these estimates for quasilinear differential and difference systems.  相似文献   

11.
For a real square matrix A and an integer d ? 0, let A (d) denote the matrix formed from A by rounding off all its coefficients to d decimal places. The main problem handled in this paper is the following: assuming that A (d) has some property, under what additional condition(s) can we be sure that the original matrix A possesses the same property? Three properties are investigated: nonsingularity, positive definiteness, and positive invertibility. In all three cases it is shown that there exists a real number α(d), computed solely from A (d) (not from A), such that the following alternative holdsif d > α(d), then nonsingularity (positive definiteness, positive invertibility) of A (d) implies the same property for A if d < α(d) and A (d) is nonsingular (positive definite, positive invertible), then there exists a matrix A′ with A(d) = A (d) which does not have the respective property.For nonsingularity and positive definiteness the formula for α(d) is the same and involves computation of the NP-hard norm ‖ · ‖∞,1; for positive invertibility α(d) is given by an easily computable formula.  相似文献   

12.
Let IK be a complete ultrametric algebraically closed field and let A be the Banach IK-algebra of bounded analytic functions in the ”open” unit disk D of IK provided with the Gauss norm. Let Mult(A, ‖. ‖) be the set of continuous multiplicative semi-norms of A provided with the topology of simple convergence, let Mult m (A, ‖. ‖) be the subset of the ?Mult(A, ‖. ‖) whose kernel is amaximal ideal and let Mult 1(A, ‖. ‖) be the subset of the ?Mult(A, ‖. ‖) whose kernel is a maximal ideal of the form (x ? a)A with aD. By analogy with the Archimedean context, one usually calls ultrametric Corona problem the question whether Mult 1(A, ‖. ‖) is dense in Mult m (A, ‖. ‖). In a previous paper, it was proved that when IK is spherically complete, the answer is yes. Here we generalize this result to any algebraically closed complete ultrametric field, which particularly applies to ? p . On the other hand, we also show that the continuous multiplicative seminorms whose kernel are neither a maximal ideal nor the zero ideal, found by Jesus Araujo, also lie in the closure of Mult 1(A, ‖. ‖), which suggest that Mult 1(A, ‖. ‖)might be dense in Mult(A, ‖. ‖).  相似文献   

13.
We consider the problem to synthesize a stabilizing control u synthesis for systems \(\frac{{dx}}{{dt}} = Ax + Bu\) where A ∈ ?n×n and B ∈ ?n×m, while the elements αi,j(·) of the matrix A are uniformly bounded nonanticipatory functionals of arbitrary nature. If the system is continuous, then the elements of the matrix B are continuous and uniformly bounded functionals as well. If the system is pulse-modulated, then the elements of the matrix B are differentiable uniformly bounded functions of time. It is assumed that k isolated uniformly bounded elements \({\alpha _{{i_l},{j_l}}}\left( \cdot \right)\) satisfying the condition \(\mathop {\inf }\limits_{\left( \cdot \right)} \left| {{\alpha _{{i_l},{j_l}}}\left( \cdot \right)} \right|{\alpha _ - } > 0,\quad l \in \overline {1,k}\) are located above the main diagonal of the matrix A(·), where G k is the set of all isolated elements of the system, J1 is the set of indices of rows of matrix A(·) containing isolated elements, and J2 is the set of indices of its rows free of isolated elements. It is assumed that other elements located above the main diagonal are sufficiently small provided that their row indices belong to J1, i.e., \(\mathop {\sup }\limits_{\left( \cdot \right)} \left| {{\alpha _{i,j}}\left( \cdot \right)} \right| < \delta ,\quad {\alpha _{i,j}} \notin {G_k},\quad i \in {J_1},\quad j > i\). All other elements located above the main diagonal are uniformly bounded. The relation u = S(·)x is satisfied in the continuous case, while the relation u = ξ(t) is satisfied in the pulse-modulated case; here the components of the vector ξ are outputs of synchronous pulse elements. Constructing a special quadratic Lyapunov function, one can determine a matrix S(·) such that the closed system becomes globally exponentially stable in the continuous case. In the pulse-modulated case, input pulses are synthesized such that the system becomes globally asymptotically stable.  相似文献   

14.
A real matrix A is a G-matrix if A is nonsingular and there exist nonsingular diagonal matrices D1 and D2 such that A?T = D1AD2, where A?T denotes the transpose of the inverse of A. Denote by J = diag(±1) a diagonal (signature) matrix, each of whose diagonal entries is +1 or ?1. A nonsingular real matrix Q is called J-orthogonal if QTJQ = J. Many connections are established between these matrices. In particular, a matrix A is a G-matrix if and only if A is diagonally (with positive diagonals) equivalent to a column permutation of a J-orthogonal matrix. An investigation into the sign patterns of the J-orthogonal matrices is initiated. It is observed that the sign patterns of the G-matrices are exactly the column permutations of the sign patterns of the J-orthogonal matrices. Some interesting constructions of certain J-orthogonal matrices are exhibited. It is shown that every symmetric staircase sign pattern matrix allows a J-orthogonal matrix. Sign potentially J-orthogonal conditions are also considered. Some examples and open questions are provided.  相似文献   

15.
Let T t : XX be a C 0-semigroup with generator A. We prove that if the abscissa of uniform boundedness of the resolvent s 0(A) is greater than zero then for each nondecreasing function h(s): ?+R + there are x′X′ and xX satisfying ∫ 0 h(|〈x′, T x x〉|)dt = ∞. If i? ∩ Sp(A) ≠ Ø then such x may be taken in D(A ).  相似文献   

16.
We prove that the nilpotent product of a set of groups A 1,…,A s has finite palindromic width if and only if the palindromic widths of A i ,i=1,…,s,are finite. We give a new proof that the commutator width of F n ?K is infinite, where F n is a free group of rank n≥2 and K is a finite group. This result, combining with a result of Fink [9] gives examples of groups with infinite commutator width but finite palindromic width with respect to some generating set.  相似文献   

17.
Let δ > 1 and β > 0 be some real numbers. We prove that there are positive u, v, N0 depending only on β and δ with the following property: for any N,n such that N ≥ max(N0, δn), any N × n random matrix A = (aij) with i.i.d. entries satisfying \({\sup _{\lambda \in \mathbb{R}}}P\left\{ {\left| {{a_{11}} - \lambda } \right| \leqslant 1} \right\} \leqslant 1 - \beta \) and any non-random N × n matrix B, the smallest singular value sn of A + B satisfies \(P\left\{ {{s_n}\left( {A + B} \right) \leqslant u\sqrt N } \right\} \leqslant \exp \left( { - vN} \right)\). The result holds without any moment assumptions on the distribution of the entries of A.  相似文献   

18.
A criterion for the classification of Bott towers is presented, i.e., two Bott towers B *(A) and B *(A′) are isomorphic if and only if the matrices A and A′ are equivalent. The equivalence relation is defined by two operations on matrices. And it is based on the observation that any Bott tower B *(A) is uniquely determined by its structure matrix A, which is a strictly upper triangular integer matrix. The classification of Bott towers is closely related to the cohomological rigidity problem for both Bott towers and Bott manifolds.  相似文献   

19.
For the number n s , β; X) of points (x 1 , x 2) in the two-dimensional Fibonacci quasilattices \( \mathcal{F}_m^2 \) of level m?=?0, 1, 2,… lying on the hyperbola x 1 2 ? ??αx 2 2 ?=?β and such that 0?≤?x 1? ≤?X, x 2? ?0, the asymptotic formula
$ {n_s}\left( {\alpha, \beta; X} \right)\sim {c_s}\left( {\alpha, \beta } \right)\ln X\,\,\,\,{\text{as}}\,\,\,\,X \to \infty $
is established, and the coefficient c s (α, β) is calculated exactly. Using this, we obtain the following result. Let F m be the Fibonacci numbers, A i \( \mathbb{N} \), i?=?1, 2, and let \( \overleftarrow {{A_i}} \) be the shift of A i in the Fibonacci numeral system. Then the number n s (X) of all solutions (A 1 , A 2) of the Diophantine system
$ \left\{ {\begin{array}{*{20}{c}} {A_1^2 + \overleftarrow {A_1^2} - 2{A_2}{{\overleftarrow A }_2} + \overleftarrow {A_2^2} = {F_{2s}},} \\ {\overleftarrow {A_1^2} - 2{A_1}{{\overleftarrow A }_1} + A_2^2 - 2{A_2}{{\overleftarrow A }_2} + 2\overleftarrow {A_2^2} = {F_{2s - 1}},} \\ \end{array} } \right. $
0?≤?A 1? ≤?X, A 2? ?0, satisfies the asymptotic formula
$ {n_s}(X)\sim \frac{{{c_s}}}{{{\text{ar}}\cosh \left( {{{1} \left/ {\tau } \right.}} \right)}}\ln X\,\,\,\,{\text{as}}\,\,\,\,X \to \infty . $
Here τ?=?(?1?+?5)/2 is the golden ratio, and c s ?=?1/2 or 1 for s?=?0 or s?≥?1, respectively.
  相似文献   

20.
Define the incremental fractional Brownian field Z_H(τ,s)=B_H(s+τ)-B_H(s),where B_H(s) is a standard fractional Brownian motion with Hurst parameter H ∈(0,1).In this paper,we first derive an exact asymptotic of distribution of the maximum M_H(T_u)=sup_τ∈[0,1],s∈[0,xT_u]Z_H(τ,s),which holds uniformly for x ∈[A,B]with A,B two positive constants.We apply the findings to analyse the tail asymptotic and limit theorem of MH(τ) with a random index τ.In the end,we also prove an ahnost sure limit theorem for the maximum M_(1/2)(T) with non-random index T.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号