首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of the paper is to give an overview of bifurcation phenomena which are typical for non-smooth dynamical systems. A small number of well-chosen examples of various kinds of non-smooth systems will be presented, followed by a discussion of the bifurcation phenomena in hand and a brief introduction to the mathematical tools which have been developed to study these phenomena. The bifurcations of equilibria in two planar non-smooth continuous systems are analysed by using a generalised Jacobian matrix. A mechanical example of a non-autonomous Filippov system, belonging to the class of differential inclusions, is studied and shows a number of remarkable discontinuous bifurcations of periodic solutions. A generalisation of the Floquet theory is introduced which explains bifurcation phenomena in differential inclusions. Lastly, the dynamics of the Woodpecker Toy is analysed with a one-dimensional Poincaré map method. The dynamics is greatly influenced by simultaneous impacts which cause discontinuous bifurcations.  相似文献   

2.
3.
This paper presents a method for the analytical prediction of sliding motions along discontinuous boundaries in non-smooth dynamical systems. The methodology is demonstrated through investigation of a periodically forced linear oscillator with dry friction. The switching conditions for sliding motions in non-smooth dynamical systems are given. The generic mappings for the friction-induced oscillator are introduced. From the generic mappings, the corresponding criteria for the sliding motions are presented through the force product conditions. The analytical prediction of the onset and vanishing of the sliding motions is illustrated. Finally, numerical simulations of sliding motions are carried out to verify the analytical prediction. This analytical prediction provides an accurate prediction of sliding motions in non-smooth dynamical systems. The switching conditions developed in this paper are expressed by the total force of the oscillator, and the nonlinearity and linearity of the spring and viscous damping forces in the oscillator cannot change such switching conditions. Therefore, the achieved force criteria can be applied to the other dynamical systems with nonlinear friction forces processing a C 0-discontinuity.  相似文献   

4.
A novel method based on time-dependent stochastic orthogonal bases for stochastic response surface approximation is proposed to overcome the problem of significant errors in the utilization of the generalized polynomial chaos(GPC) method that approximates the stochastic response by orthogonal polynomials. The accuracy and effectiveness of the method are illustrated by different numerical examples including both linear and nonlinear problems. The results indicate that the proposed method modifies the stochastic bases adaptively, and has a better approximation for the probability density function in contrast to the GPC method.  相似文献   

5.
Hopf bifurcation control in nonlinear stochastic dynamical system with nonlinear random feedback method is studied in this paper. Firstly, orthogonal polynomial approximation is applied to reduce the controlled stochastic nonlinear dynamical system with nonlinear random controller to the deterministic equivalent system, solvable by suitable numerical methods. Then, Hopf bifurcation control with nonlinear random feedback controller is discussed in detail. Numerical simulations show that the method provided in this paper is not only available to control the stochastic Hopf bifurcation in nonlinear stochastic dynamical system, but is also superior to the deterministic nonlinear feedback controller.  相似文献   

6.
7.
A procedure is derived which allows for a systematic construction of three-dimensional ordinary differential equations having homoclinic solutions. The equations are proved to exhibit codimension-two homoclinic bifurcation points. Examples include the non-orientable resonant bifurcation, the inclination-flip, and the orbit-flip. In addition, an equation is constructed which has a homoclinic orbit converging to a saddle-focus satisfying Shilnikov's condition. The vector fields are polynomial and non-stiff in that the eigenvalues are of moderate size.  相似文献   

8.
非光滑动力系统Lyapunov指数谱的计算方法   总被引:8,自引:1,他引:8  
金俐  陆启韶 《力学学报》2005,37(1):40-47
对 n 维非光滑(刚性约束和分段光滑)动力系统引进局部映射,利用 Poincaré映射分析方法得出了非光滑系统 Lyapunov 指数谱的通用计算方法.以一类刚性约束的非线性动力系统为例,给出了 Lyapunov 指数谱随参数大范围变化的规律,并与相应的 Poincaré映射分岔图进行对照,验证了上述通用计算方法的正确性和有效性.  相似文献   

9.
Bayesian approaches to statistical inference and system identification became practical with the development of effective sampling methods like Markov Chain Monte Carlo (MCMC). However, because the size and complexity of inference problems has dramatically increased, improved MCMC methods are required. Dynamical systems based samplers are an effective extension of traditional MCMC methods. These samplers treat the posterior probability distribution as the potential energy function of a dynamical system, enabling them to better exploit the structure of the inference problem. We present an algorithm, Second-Order Langevin MCMC (SOL-MC), a stochastic dynamical system based MCMC algorithm, which uses the damped second-order Langevin stochastic differential equation (SDE) to sample a posterior distribution. We design the SDE such that the desired posterior probability distribution is its stationary distribution. Since this method is based upon an underlying dynamical system, we can utilize existing work to develop, implement, and optimize the sampler's performance. As such, we can choose parameters which speed up the convergence to the stationary distribution and reduce temporal state and energy correlations in the samples. We then apply this sampler to a system identification problem for a non-linear hysteretic structure model to investigate this method under globally identifiable and unidentifiable conditions.  相似文献   

10.
Though the Lyapunov function method is more efficient than the largest Lyapunov exponent method in evaluating the stochastic stability of multi-degree-of-freedom (MDOF) systems, the construction of Lyapunov function is a challenging task. In this paper, a specific linear combination of subsystems’ energies is proposed as Lyapunov function for MDOF nonlinear stochastic dynamical systems, and the corresponding sufficient condition for the asymptotic Lyapunov stability with probability one is then determined. The proposed procedure to construct Lyapunov function is illustrated and validated with several representative examples, where the influence of coupled/uncoupled dampings and excitation intensities on stochastic stability is also investigated.  相似文献   

11.
This is a preliminary study about the bifurcation phenomenon in fractional order dynamical systems. Persistence of some continuous time fractional order differential equations is studied. A numerical example for Hopf-type bifurcation in a fractional order system is given, hence we propose a modification of the conditions of Hopf bifurcation. Local stability of some biologically motivated functional equations is investigated.  相似文献   

12.
《力学快报》2023,13(3):100433
The solution of fractional-order systems has been a complex problem for our research. Traditional methods like the predictor-corrector method and other solution steps are complicated and cumbersome to derive, which makes it more difficult for our solution efficiency. The development of machine learning and nonlinear dynamics has provided us with new ideas to solve some complex problems. Therefore, this study considers how to improve the accuracy and efficiency of the solution based on traditional methods. Finally, we propose an efficient and accurate nonlinear auto-regressive neural network for the fractional order dynamic system prediction model (FODS-NAR). First, we demonstrate by example that the FODS-NAR algorithm can predict the solution of a stochastic fractional order system. Second, we compare the FODS-NAR algorithm with the famous and good reservoir computing (RC) algorithms. We find that FODS-NAR gives more accurate predictions than the traditional RC algorithm with the same system parameters, and the residuals of the FODS-NAR algorithm are closer to 0. Consequently, we conclude that the FODS-NAR algorithm is a method with higher accuracy and prediction results closer to the state of fractional-order stochastic systems. In addition, we analyze the effects of the number of neurons and the order of delays in the FODS-NAR algorithm on the prediction results and derive a range of their optimal values.  相似文献   

13.
Nonlinear Dynamics - One of the most important problems of nonlinear dynamics is related to the development of methods concerning the identification of the dynamical modes of the corresponding...  相似文献   

14.
15.
We investigate a typical aerofoil section under dynamic stall conditions, the structural model is linear and the aerodynamic loading is represented by the Leishman–Beddoes semi-empirical dynamic stall model. The loads given by this model are non-linear and non-smooth, therefore we have integrated the equation of motion using a Runge–Kutta–Fehlberg algorithm equipped with event detection. The main focus of the paper is on the interaction between the Hopf bifurcation typical of aero-elastic systems, which causes flutter oscillations, and the discontinuous definition of the stall model. The paper shows how the non-smooth definition of the dynamic stall model can generate a non-smooth Hopf bifurcation. The mechanisms for the appearance of limit cycle attractors are described by using standard tools of the theory of dynamical systems such as phase plots and bifurcation diagrams.  相似文献   

16.
This paper presents a study of a three-parameter unfolding of a degenerate case in the Hopf--saddle-node singularity. This analysis shows that this nonlinear degeneracy is a source of interesting bifurcations of periodic orbits as well as global bifurcations of equilibria. The results achieved are applied to the study of a simple autonomous electronic circuit, which has just only one nonlinearity. The numerical results include the analysis of interesting resonance behaviors.  相似文献   

17.
Li  Yang  Xu  Shengyuan  Duan  Jinqiao  Liu  Xianbin  Chu  Yuming 《Nonlinear dynamics》2022,109(3):1877-1886
Nonlinear Dynamics - The concept of quasi-potential plays a central role in understanding the mechanisms of rare events and characterizing the statistics of transition behaviors in stochastic...  相似文献   

18.
19.
20.
结构非平稳随机响应分析的快速虚拟激励法   总被引:1,自引:0,他引:1  
徐瑞  苏成 《计算力学学报》2010,27(5):822-827
虚拟激励法能够方便地应用于结构非平稳随机响应分析,但在每个离散频点处都涉及到虚拟激励作用下动力方程的时程积分,对于大型复杂结构,其计算量是难以接受的。将结构动力方程写成状态方程形式,采用精细积分法对状态方程进行数值求解,导出了结构动力响应关于离散时刻处激励的显式线性表达式。利用这一显式表达式,只需要变换离散时刻处的激励数值,就可以方便快捷地求出新的激励作用下的结构动力响应。效率分析和数值算例表明,相对于传统虚拟激励法,本文提出的改进算法在求解非平稳激励下结构随机振动方面具有更高的计算效率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号