共查询到20条相似文献,搜索用时 0 毫秒
1.
Bamadev Sahoo 《Nonlinear dynamics》2020,99(2):945-979
This paper investigates nonlinear combined parametric transverse vibrations of a traveling viscoelastic beam. The combined parametric excitations originate from the time dependency of axial velocity as well as axial tension. Two parametric excitations are enforced into the system amid the internal resonance. Two-frequency parametric resonance is assumed to be comprised of combination parametric resonance of first two modes due to the time dependency of axial velocity, and the principal parametric resonance of first mode due to the variable tension in the axial direction in the presence of internal resonance for viscoelastic beam is considered for the first time. The higher-order integro-partial differential equation of motion is solved through direct method of multiple scales. Continuation algorithm is employed to explore the stability and various bifurcations of the nonlinear dynamic system. Focus has been made to study the effect of variations of fluctuating tension component, fluctuating velocity component independently and when combined, internal and parametric frequency detuning parameters and damping on the system response. Frequency response equilibrium curves are complex and unique in shapes which are embodied with various bifurcations. Such steady-state behavior is not seen in the existent literature. With variation in fluctuating velocity component, the number of steady-state nontrivial equilibrium curves increases to three and with variation in fluctuating axial tension, they become four. In this process, significant changes in stability, number and position of various bifurcations like supercritical and subcritical pitchfork, Hopf and saddle node are observed. Unlike the previous study, the shape, stability and bifurcations of equilibrium curves under the combined effect of axial velocity and tension closely match with the case of fluctuating axial tension component. The effect of variation in internal and parametric frequency detuning parameter is more realized for second mode compared to first mode. A comparison of the present work with a previous one where axial tension is variable reveals many qualitative and quantitative similarities and dissimilarities. But when compared with earlier work where axial velocity is constant, significant dissimilarities are surfaced. The system displays a wide ranging dynamic behavior including stable periodic, quasiperiodic and unstable chaotic behavior. The numerical computation depicts various nonlinear characteristics and oscillatory behaviors which are not found so far in the existent literature. 相似文献
2.
The effect of the narrow-band random excitation on the non-linear response of sandwich plates with an incompressible viscoelastic core is investigated. To model the core, both the transverse shear strains and rotations are assumed to be moderate and the displacement field in the thickness direction is assumed to be linear for the in-plane components and quadratic for the out-of-plane components. In connection to the moderate shear strains considered for the core, a non-linear single-integral viscoelastic model is also used for constitutive modeling of the core. The fifth-order perturbation method is used together with the Galerkin method to transform the nine partial differential equations to a single ordinary integro-differential equation. Converting the lower-order viscoelastic integral term to the differential form, the fifth-order method of multiple scale is applied together with the method of reconstitution to obtain the stochastic phase-amplitude equations. The Fokker–Planck–Kolmogorov equation corresponding to these equations is then solved by the finite difference method, to determine the probability density of the response. The variation of root mean square and marginal probability density of the response amplitude with excitation deterministic frequency and magnitudes are investigated and the bimodal distribution is recognized in narrow ranges of excitation frequency and magnitude. 相似文献
3.
This paper investigates the nonlinear forced dynamics of an axially moving Timoshenko beam. Taking into account rotary inertia and shear deformation, the equations of motion are obtained through use of constitutive relations and Hamilton’s principle. The two coupled nonlinear partial differential equations are discretized into a set of nonlinear ordinary differential equations via Galerkin’s scheme. The set is solved by means of the pseudo-arclength continuation technique and direct time integration. Specifically, the frequency-response curves of the system in the subcritical regime are obtained via the pseudo-arclength continuation technique; the bifurcation diagrams of Poincaré maps are obtained by means of direct time integration of the discretized equations. The resonant response is examined, for the cases when the system possesses a three-to-one internal resonance and when not. Results are shown through time traces, phase-plane portraits, and fast Fourier transforms (FFTs). The results indicate that the system displays a wide variety of rich dynamics. 相似文献
4.
《应用数学和力学(英文版)》2017,(1)
Under the 3:1 internal resonance condition,the steady-state periodic response of the forced vibration of a traveling viscoelastic beam is studied.The viscoelastic behaviors of the traveling beam are described by the standard linear solid model,and the material time derivative is adopted in the viscoelastic constitutive relation.The direct multi-scale method is used to derive the relationships between the excitation frequency and the response amplitudes.For the first time,the real modal functions are employed to analytically investigate the periodic response of the axially traveling beam.The undetermined coefficient method is used to approximately establish the real modal functions.The approximate analytical results are confirmed by the Galerkin truncation.Numerical examples are presented to highlight the effects of the viscoelastic behaviors on the steady-state periodic responses.To illustrate the effect of the internal resonance,the energy transfer between the internal resonance modes and the saturation-like phenomena in the steady-state responses is presented. 相似文献
5.
Nonlinear dynamics of a pipe conveying pulsating fluid with parametric and internal resonances 总被引:1,自引:0,他引:1
In this paper, the nonlinear planar vibration of a pipe conveying pulsatile fluid subjected to principal parametric resonance
in the presence of internal resonance is investigated. The pipe is hinged to two immovable supports at both ends and conveys
fluid at a velocity with a harmonically varying component over a constant mean velocity. The geometric cubic nonlinearity
in the equation of motion is due to stretching effect of the pipe. The natural frequency of the second mode is approximately
three times the natural frequency of the first mode for a range of mean flow velocity, resulting in a three-to-one internal
resonance. The analysis is done using the method of multiple scales (MMS) by directly attacking the governing nonlinear integral-partial-differential
equations and the associated boundary conditions. The resulting set of first-order ordinary differential equations governing
the modulation of amplitude and phase is analyzed numerically for principal parametric resonance of first mode. Stability,
bifurcation, and response behavior of the pipe are investigated. The results show new zones of instability due to the presence
of internal resonance. A wide array of dynamical behavior is observed, illustrating the influence of internal resonance. 相似文献
6.
In this paper, the transmissibility of a viscoelastic beam supported by vertical springs is defined by proposing a new vertical elastic support boundary. By contrasting with the viscoelastic beam with rigid vertical supports and the rigid rod with vertical elastic support ends, the necessity of the transmissibility of an elastic structure with vertical elastic supports is proved. In order to approximately solve the steady-state responses of the nonlinear transverse vibration of the viscoelastic beam under periodic excitation, the harmonic balance method in conjunction with the pseudo arc-length method is adopted. The numerical results are calculated to confirm the approximate analytic results. The comparison between the rigid rod and the elastic beam shows that neglecting the bending vibration of the structures will underestimate the frequency range in which the elastic support produces an effective vibration isolation. On the other hand, the comparison between the rigid support and the spring support demonstrates that ignoring the elasticity of the support ends will create a false understanding of the force transmission of elastic structures. In general, this paper presents the necessity of studying the force transmission of elastic structures with elastic supports. Moreover, this paper will become the beginning of the study of the vibration isolation of the elastic structure. 相似文献
7.
8.
Ming Hai Wei Yi Qing Xiao Hai Tao Liu Kun Lin 《Archive of Applied Mechanics (Ingenieur Archiv)》2014,84(2):173-185
This paper analytically investigates the nonlinear responses of a cable-beam coupled system under the combined effects of internal and external resonance. The cable is considered a geometric nonlinearity, and the beam is considered as Euler–Bernoulli model, but it is coupled by fixing it at one end. The coupled nonlinear differential equations are formulated by using the Hamilton principle. The spatial problem is solved by using Galerkin’s method to simplify the governing equations to a set of ordinary differential equations. Applying the multiple time scales method to the ordinary differential equations, the first approximate solutions and solvability condition are derived. The effects of the cable sag to span ratio, mass ratio, and stiffness ratio on the nonlinear responses are investigated. The results show good agreement between the analytical and numerical solutions especially near the external resonance frequency. 相似文献
9.
10.
Nonlinear Dynamics - In this study, the large amplitude vibration of the cable-stayed beam subjected to external excitation is investigated. Emphasis is focused on the one-to-one resonant... 相似文献
11.
Nonlinear response of an initially buckled beam with 1:1 internal resonance to sinusoidal excitation
The nonlinear response of an initially buckled beam in the neighborhood of 1:1 internal resonance is investigated analytically, numerically, and experimentally. The method of multiple time scales is applied to derive the equations in amplitudes and phase angles. Within a small range of the internal detuning parameter, the first mode; which is externally excited, is found to transfer energy to the second mode. Outside this region, the response is governed by a unimodal response of the first mode. Stability boundaries of the unimodal response are determined in terms of the excitation level, and internal and external detuning parameters. Boundaries separating unimodal from mixed mode responses are obtained in terms of the excitation and internal detuning parameters. Stationary and non-stationary solutions are found to coexist in the case of mixed mode response. For the case of non-stationary response, the modulation of the amplitude depends on the integration increment such that the motion can be periodically or chaotically modulated for a choice of different integration increments. The results obtained by multiple time scales are qualitatively compared with those obtained by numerical simulation of the original equations of motion and by experimental measurements. Both numerical integration and experimental results reveal the occurrence of multifurcation, escaping from one well to the other in an irregular manner. and chaotic motion. 相似文献
12.
Nonlinear Dynamics - Modulational instability, as a mechanism of wave trains and soliton formation in biological system, is explored in the frame work of the new FitzHugh–Nagumo model. This... 相似文献
13.
A convenient and universal residue calculus method is proposed to study the stochastic response behaviors of an axially moving viscoelastic beam with random noise excitations and fractional order constitutive relationship, where the random excitation can be decomposed as a nonstationary stochastic process, Mittag-Leffler internal noise, and external stationary noise excitation. Then, based on the Laplace transform approach, we derived the mean value function, variance function and covariance function through the Green's function technique and the residue calculus method, and obtained theoretical results. In some special case of fractional order derivative α , the Monte Carlo approach and error function results were applied to check the effectiveness of the analytical results, and good agreement was found. Finally in a general-purpose case, we also confirmed the analytical conclusion via the direct Monte Carlo simulation. 相似文献
14.
15.
Stability and bifurcation behaviors for a model of a flexible beam undergoing a large linear motion with a combination parametric resonance are studied by means of a combination of analytical and numerical methods. Three types of critical points for the bifurcation equations near the combination resonance in the presence of internal resonance are considered, which are characterized by a double zero and two negative eigenvalues, a double zero and a pair of purely imaginary eigenvalues, and two pairs of purely imaginary eigenvalues in nonresonant case, respectively. The stability regions of the initial equilibrium solution and the critical bifurcation curves are obtained in terms of the system parameters. Especially, for the third case, the explicit expressions of the critical bifurcation curves leading to incipient and secondary bifurcations are obtained with the aid of normal form theory. Bifurcations leading to Hopf bifurcations and 2-D tori and their stability conditions are also investigated. Some new dynamical behaviors are presented for this system. A time integration scheme is used to find the numerical solutions for these bifurcation cases, and numerical results agree with the analytic ones. 相似文献
16.
The bifurcations and chaotic dynamics of parametrically and externally excited suspended cables are investigated in this paper.
The equations of motion governing such systems contain quadratic and cubic nonlinearities, which may result in two-to-one
and one-to-one internal resonances. The Galerkin procedure is introduced to simplify the governing equations of motion to
ordinary differential equations with two-degree-of-freedom. The case of one-to-one internal resonance between the modes of
suspended cables, primary resonant excitation, and principal parametric excitation of suspended cables is considered. Using
the method of multiple scales, a parametrically and externally excited system is transformed to the averaged equations. A
pseudo arclength scheme is used to trace the branches of the equilibrium solutions and an investigation of the eigenvalues
of the Jacobian matrix is used to assess their stability. The equilibrium solutions experience pitchfork, saddle-node, and
Hopf bifurcations. A detailed bifurcation analysis of the dynamic (periodic and chaotic) solutions of the averaged equations
is presented. Five branches of dynamic solutions are found. Three of these branches that emerge from two Hopf bifurcations
and the other two are isolated. The two Hopf bifurcation points, one is supercritical Hopf bifurcation point and another is
primary Hopf bifurcation point. The limit cycles undergo symmetry-breaking, cyclic-fold, and period-doubling bifurcations,
whereas the chaotic attractors undergo attractor-merging, boundary crises. Simultaneous occurrence of the limit cycle and
chaotic attractors, homoclinic orbits, homoclinic explosions and hyperchaos are also observed. 相似文献
17.
The nonlinear dynamics of a clamped-clamped/sliding inextensional elastic beam subject to a harmonic axial load is investigated. The Galerkin method is used on the coupled bending-bending-torsional nonlinear equations with inertial and geometric nonlinearities and the resulting two second order ordinary differential equations are studied by the method of multiple time seales and by direct numerical integration. The amplitude equations are analyzed for steady and Hopf bifurcations. Depending on the amplitude of excitation, the damping and the ratio of principal flexural rigidities, various qualitatively distinct frequency response diagrams are uncovered and limit cycles and chaotic motions are found. In the truncated two-degree-of-freedom system the transition from periodic to chaotic amplitude-modulated motions is via the process of torus doubling and subsequent destruction of the torus. 相似文献
18.
The nonlinear dynamics of cantilevered piezoelectric beams is investigated under simultaneous parametric and external excitations. The beam is composed of a substrate and two piezoelectric layers and assumed as an Euler–Bernoulli model with inextensible deformation. A nonlinear distributed parameter model of cantilevered piezoelectric energy harvesters is proposed using the generalized Hamilton's principle. The proposed model includes geometric and inertia nonlinearity, but neglects the material nonlinearity. Using the Galerkin decomposition method and harmonic balance method, analytical expressions of the frequency–response curves are presented when the first bending mode of the beam plays a dominant role. Using these expressions, we investigate the effects of the damping, load resistance, electromechanical coupling, and excitation amplitude on the frequency–response curves. We also study the difference between the nonlinear lumped-parameter and distributedparameter model for predicting the performance of the energy harvesting system. Only in the case of parametric excitation, we demonstrate that the energy harvesting system has an initiation excitation threshold below which no energy can be harvested.We also illustrate that the damping and load resistance affect the initiation excitation threshold. 相似文献
19.
Nonlinear Dynamics - A homogeneous continuous viscoelastic beam, describing the dynamics of a base-isolated tower, exposed to a uniformly distributed turbulent wind flow, is studied. The beam is... 相似文献
20.
K. Marynowski 《International Journal of Non》2007,42(1):118-131
Non-linear vibrations of axially moving beam with time-dependent tension are investigated in this paper. The beam material is modelled as three-parameter Zener element. The Galerkin method and the fourth order Runge-Kutta method are used to solve the governing non-linear partial-differential equation. The effects of the transport speed, the tension perturbation amplitude and the internal damping on the dynamic behaviour of the system are numerically investigated. The Poincare maps and bifurcation diagrams are constructed to classify the vibrations. For small values of the transport speed and the amplitude of periodic perturbation the system is asymptotically stable with its response tending to zero. With the increase of parameters one can observe the coexistence of attractors. Regular and chaotic motion occur when the internal damping increases. 相似文献