首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Benjamin [1] and Davis and Acrivos [2] derived an equation for long steady nonlinear internal waves in an infinitely deep stratified fluid when the density varies only in a layer whose thickness is small compared with the characteristic perturbation length. Ono [3] generalized this equation to the unsteady case. The resulting equation was subsequently called the Benjamin—Ono equation. Steady solutions of this equation were found by Benjamin and Ono in the form of solitons and periodic waves. In the present paper it is shown that long nonlinear waves on shallow water in the presence of a horizontal magnetic field can also be described by the Benjamin—Ono equation, and not the Korteweg—de Vries equation [4], as in the case when there is no field. Moreover, in contrast to a soliton in a stratified fluid a soliton on shallow water in a horizontal magnetic field moves with a velocity less than the velocity of infinitely long perturbations of small amplitude. The dependence of the parameters of a soliton and a periodic wave on the intensity and direction of the unperturbed magnetic field is investigated.  相似文献   

2.
Zhang  Run-Fa  Li  Ming-Chu  Cherraf  Amina  Vadyala  Shashank Reddy 《Nonlinear dynamics》2023,111(9):8637-8646

Interference wave is an important research target in the field of navigation, electromagnetic and earth science. In this work, the nonlinear property of neural network is used to study the interference wave and the bright and dark soliton solutions. The generalized broken soliton-like equation is derived through the generalized bilinear method. Three neural network models are presented to fit explicit solutions of generalized broken soliton-like equations and Boiti–Leon–Manna–Pempinelli-like equation with 100% accuracy. Interference wave solutions of the generalized broken soliton-like equation and the bright and dark soliton solutions of the Boiti–Leon–Manna–Pempinelli-like equation are obtained with the help of the bilinear neural network method. Interference waves and the bright and dark soliton solutions are shown via three-dimensional plots and density plots.

  相似文献   

3.
By means of the known Darboux transformation, starting from some stationary wave solutions, we construct a large number of new explicit multiple waves solutions to the Korteweg–de Vries equation, including stationary periodic–soliton solutions, stationary soliton–periodic solutions, doubly periodic solutions, triply periodic solutions, as well as two- and three-soliton solutions.  相似文献   

4.
The new (2+1)-dimensional generalized KdV equation which exists the bilinear form is mainly discussed. We prove that the equation does not admit the Painlevé property even by taking the arbitrary constant a=0. However, this result is different from Radha and Lakshmanan??s work. In addition, based on Hirota bilinear method, periodic wave solutions in terms of Riemann theta function and rational solutions are derived, respectively. The asymptotic properties of the periodic wave solutions are analyzed in detail.  相似文献   

5.
Dispersive shock waves (DSWs) in the three dimensional Benjamin–Ono (3DBO) equation are studied with step-like initial condition along a paraboloid front. By using a similarity reduction, the problem of studying DSWs in three space one time (3+1) dimensions reduces to finding DSW solution of a (1+1) dimensional equation. By using a special ansatz, the 3DBO equation exactly reduces to the spherical Benjamin–Ono (sBO) equation. Whitham modulation equations are derived which describes DSW evolution in the sBO equation by using a perturbation method. These equations are written in terms of appropriate Riemann type variables to obtain the sBO-Whitham system. DSW solution which is obtained from the numerical solutions of the Whitham system and the direct numerical solution of the sBO equation are compared. In this comparison, a good agreement is found between these solutions. Also, some physical qualitative results about DSWs in sBO equation are presented. It is concluded that DSW solutions in the reduced sBO equation provide some information about DSW behavior along the paraboloid fronts in the 3DBO equation.  相似文献   

6.
Under investigation in this paper are the Zhiber?CShabat and (2+1)-dimensional Gardner equations in quantum fields, fluids and plasmas. Via the Hirota method and symbolic computation, the Bell-polynomial approach is performed to directly bilinearize those equations. For the Zhiber?CShabat equation, based on the bilinear form with an auxiliary variable, the bell-shaped soliton, upside-down bell-shaped soliton and breather-like solutions are obtained. Figures are plotted to illustrate the elastic interactions between two upside-down bell-shaped solitons and the interaction between the breather-like. As to the (2+1)-dimensional Gardner equation, bilinear form, B?cklund transformation, one- and two-shock wave solutions are derived. Amplitude-compression and amplification interactions are investigated analytically and graphically.  相似文献   

7.
In this paper, we consider an extended KdV equation, which arises in the analysis of several problems in soliton theory. First, we converted the underlying equation into the Hirota bilinear form. Then, using the novel test function method, abundant multi-soliton solutions were obtained. Second, we have performed some distinct methods to extended KdV equation for getting some exact wave solutions. In this regard, Kudryashov’s simplest equation methods were examined. Third, the local conservation laws are deduced by multiplier/homotopy methods. Finally, the graphical simulations of the exact solutions are depicted.  相似文献   

8.
With the aid of the known Bäcklund transformation, starting from some given traveling solutions, we consider new exact no-traveling wave solutions to the Liouville equation, and a series of breather soliton solutions, doubly periodic solutions, two-soliton solutions as well as periodic-soliton solutions are obtained.  相似文献   

9.
Zhao  Xin  Tian  Bo  Tian  He-Yuan  Yang  Dan-Yu 《Nonlinear dynamics》2021,103(2):1785-1794

In this paper, outcomes of the study on the Bäcklund transformation, Lax pair, and interactions of nonlinear waves for a generalized (2 + 1)-dimensional nonlinear wave equation in nonlinear optics, fluid mechanics, and plasma physics are presented. Via the Hirota bilinear method, a bilinear Bäcklund transformation is obtained, based on which a Lax pair is constructed. Via the symbolic computation, mixed rogue–solitary and rogue–periodic wave solutions are derived. Interactions between the rogue waves and solitary waves, and interactions between the rogue waves and periodic waves, are studied. It is found that (1) the one rogue wave appears between the two solitary waves and then merges with the two solitary waves; (2) the interaction between the one rogue wave and one periodic wave is periodic; and (3) the periodic lump waves with the amplitudes invariant are depicted. Furthermore, effects of the noise perturbations on the obtained solutions will be investigated.

  相似文献   

10.
IntroductionCamassa ,Holm[1]obtainedaclassofnewcompletelyintegrableshallowwaterequation ,i.e.,Camassa_Holmequation2ut+ 2kux-12 uxxt+ 6uux =uxuxxx+ 12 uuxxx. ( 1 )Foreveryk,theEq .( 1 )isaclassofcompletelyintegrablesystem .Thisclassofequationisaclassofnotonlystrangebutalso…  相似文献   

11.
Kumar  Sachin  Malik  Sandeep  Rezazadeh  Hadi  Akinyemi  Lanre 《Nonlinear dynamics》2022,107(3):2703-2716

The fourth-order nonlinear Boussinesq water wave equation, which explains the propagation of long waves in shallow water, is explored in this article. We used the Lie symmetry approach to analyze the Lie symmetries and vector fields. Then, by using similarity variables, we obtained the symmetry reductions and soliton wave solutions. In addition, the Kudryashov method and its modification are used to explore the bright and singular solitons while the Hirota bilinear method is effectively used to obtain a form of breather and lump wave solutions. The physical explanation of the extracted solutions was shown with the free choice of different parameters by depicting some 2-D, 3-D, and their corresponding contour plots.

  相似文献   

12.
In this paper, we consider a (\(2+1\))-dimensional generalized Caudrey–Dodd–Gibbon–Kotera–Sawada (gCDGKS) equation, which is a higher-order generalization of the celebrated Kadomtsev–Petviashvili (KP) equation. By considering the Hirota bilinear form of the CDGKS equation, we study a type of exact interaction waves by the way of vector notations. The interaction solutions, which possess extensive applications in the nonlinear system, are composed by lump wave parts and soliton wave parts, respectively. Under certain conditions, this kind of solutions can be transformed into the pure lump waves or the stripe solitons. Moreover, we provide the graphical analysis of such solutions in order to better understand their dynamical behavior.  相似文献   

13.
The adiabatic decay of Benjamin–Ono algebraic solitons is studied when the influence of various types of small dissipation and radiative losses due to large scale Coriolis dispersion are taken into consideration. The physically most important dissipations are studied, Rayleigh and Reynolds dissipation, Landau damping, dissipation in a laminar boundary layer and Chezy friction on a rough bottom. The decay laws for the soliton parameters, that is amplitude, velocity and width, are found in analytical form and are compared with the results of direct numerical modelling.  相似文献   

14.
Peng  Li-Juan 《Nonlinear dynamics》2021,105(1):707-716

Under investigation is a completely generalized Hirota–Satsuma–Ito equation in (2 + 1)-dimensional. Multiple lump solutions are obtained based on three test functions, including 1-, 2- and 3-order lump solutions. Subsequently, the interaction between lump wave and solitary waves, and the interaction solution between lump wave and periodic wave are studied by using the bilinear form. Final, the stability and phase velocity are investigated. In order to analyze the dynamic behavior of these solutions, some 3D plots and contour plots are given by Mathematica.

  相似文献   

15.
The integrability and multi-shock wave solutions of the DJKM equation are studied by means of Bell polynomials scheme, Hirota bilinear method, and symbolic computation. A more generalized bilinear system of the DJKM equation is constructed via Bell polynomials scheme. Moreover, Lax pair and infinite conservation laws of this equation are first obtained via its corresponding Bell-polynomials-type Bäcklund transformation. Furthermore, the multi-shock wave solutions are also obtained by applying standard Hirota bilinear method, and the propagation and collision of shock waves are graphically demonstrated by graphs.  相似文献   

16.
Alquran  Marwan  Alhami  Rahaf 《Nonlinear dynamics》2022,109(3):1985-1992

In this paper, we implement the Hirota’s bilinear method to extract diverse wave profiles to the generalized perturbed-KdV equation when the test function approaches are taken into consideration. Several novel solutions such as lump-soliton, lump-periodic, single-stripe soliton, breather waves, and two-wave solutions are obtained to the proposed model. We conduct some graphical analysis including 2D and 3D plots to show the physical structures of the recovery solutions. On the other hand, this work contains a correction of previous published results for a special case of the perturbed KdV. Moreover, we investigate the significance of the nonlinearity, perturbation, and dispersion parameters being acting on the propagation of the perturbed KdV. Finally, our obtained solutions are verified by inserting them into the governing equation.

  相似文献   

17.
In nonlinear science, the interactions among solitons are well studied because the multiple soliton solutions can be obtained by various effective methods. However, it is very difficult to study interactions among different types of nonlinear waves such as the solitons (or solitary waves), the cnoidal periodic waves and Painlevé waves. In this paper, taking the Kadomtsev–Petviashvili (KP) equation as an illustration model, a new method is established to find interactions among different types of nonlinear waves. The nonlocal symmetries related to the Darboux transformation (DT) of the KP equation is localized after embedding the original system to an enlarged one. Then the DT is used to find the corresponding group invariant solutions. It is shown that the essential and unique role of the DT is to add an additional soliton on a Boussinesq-type wave or a KdV-type wave, which are two basic reductions of the KP equation.  相似文献   

18.
Li  Ming-Wei  Xu  Dong-Yang  Geng  Jing  Hong  Wei-Chiang 《Nonlinear dynamics》2022,108(3):2447-2460

Studies of the shallow water waves are active, possessing the applications in ocean engineering, marine environment, atmospheric science, etc. In this paper, we investigate a (3+1)-dimensional shallow water wave equation with time-dependent coefficients. Hirota method and symbolic computation help us work out (1) a bilinear form, (2) N-soliton solutions with N being a positive integer, (3) the higher-order breather solutions, (4) periodic-wave solutions and (5) hybrid solutions composed of one first-order breather and one soliton/two solitons. Moreover, we provide some nonlinear phenomena described by the associated solutions. All of the obtained results are determined via the time-dependent coefficients of that equation.

  相似文献   

19.
It is considered that a thin strut sits in a supercritical shallow water flow sheet over a homogeneous or very mildly varying topography. This stationary 3-D problem can be reduced from a Boussinesq-type equation into a KdV equation with a forcing term due to uneven topography, in which the transverse coordinate Y plays a same role as the time in original KdV equation. As the first example a multi-soliton wave pattern is shown by means of N-soliton solution. The second example deals with the generation of solitary wave-train by a wedge-shaped strut on an even bottom. Whitham's average method is applied to show that the shock wave jump at the wedge vertex develops to a cnoidal wave train and eventually to a solitary wavetrain. The third example is the evolution of a single oblique soliton over a periodically varying topography. The adiabatic perturbation result due to Karpman & Maslov (1978) is applied. Two coupled ordinary differential equations with periodic disturbance are obtained for the soliton amplitude and phase. Numerical solutions of these equations show chaotic patterns of this perturbed soliton.  相似文献   

20.
Plane wave and soliton solutions of the two types of Zakharov equation (two dimensional and simplified one directional) are considered. Stability properties in one dimensional space are seen to be similar. This is interesting, as the first type of equation is not solvable whereas the second is. The soliton solutions of both are one dimensionally stable but those of the full Zakharov equations are unstable with respect to perpendicular perturbations. Regions of stability of nonlinear wave and shock wave solutions in parameter space as well as growth rates of instabilities are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号