首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper, we present a new technique, developed using time-delay estimation (TDE) and supervising switching control (SSC), for the control and synchronization of chaos systems. The proposed technique consists of three units: a time-delay estimation unit that cancels system dynamics, a pole placement control unit that shapes error dynamics, and an SSC unit that is activated when the system dynamics are rapidly changing. We prove the stability of the closed-loop system using the Lyapunov analysis method. To verify the control and synchronization performance of the proposed technique (TDE-SSC), we compare it with TDC using numerical simulation. Our results indicate that the proposed scheme is an easily understood, numerically efficient, robust, and accurate solution for the control and synchronization of chaos systems.  相似文献   

2.
Nonlinear Dynamics - This paper studies the local adaptive and robust adaptive control methodologies for the synchronization of the chaotic drive and the response systems with finite time lags,...  相似文献   

3.
The study, by using aperiodically intermittent pinning control, is to synchronize switched delayed complex networks with unstable subsystems. Matrix \(\omega \)-measure and mode-dependent average dwell time method are used to achieve globally exponential synchronization for such system. By designing the useful switching rule and control scheme, we obtain the novel synchronization criteria, which improve the conventional results. Finally, simulation analysis demonstrates the advantages of proposed innovations.  相似文献   

4.
In this paper, the synchronization problem and its application in secret communication are investigated for two fractional-order chaotic systems with unequal orders, different structures, parameter uncertainty and bounded external disturbance. On the basis of matrix theory, properties of fractional calculus and adaptive control theory, we design a feedback controller for realizing the synchronization. In addition, in order to make it better apply to secret communication, we design an optimal controller based on optimal control theory. In the meantime, we propose an improved quantum particle swarm optimization (QPSO) algorithm by introducing an interval estimation mechanism into QPSO algorithm. Further, we make use of QPSO algorithm with interval estimation to optimize the proposed controller according to some performance indicator. Finally, by comparison, numerical simulations show that the controller not only can achieve the synchronization and secret communization well, but also can estimate the unknown parameters of the systems and bounds of external disturbance, which verify the effectiveness and applicability of the proposed control scheme.  相似文献   

5.
This paper brings attention to the chaotic antisynchronization and synchronization for a novel class of chaotic systems with different structure and dimensions by using a new sliding mode control strategy. This approach needs only n?1 controllers, where n is the number of the salve system dimensions. And our method uses proportional integral (PI) surface and saturation function to simplify the task of assigning the performance of the closed-loop error system in sliding motion. Furthermore, the sufficient conditions are derived, and representative examples are proposed as well. Finally, numerical simulations are provided to verify the effectiveness and feasibility of the proposed control scheme, which are in agreement with theoretical analysis.  相似文献   

6.
This paper is concerned with the output feedback \(\mathcal {H}_\infty \) control problem for a class of stochastic nonlinear systems with time-varying state delays; the system dynamics is governed by the stochastic time-delay It \(\hat{o}\) -type differential equation with state and disturbance contaminated by white noises. The design of the output feedback \(\mathcal {H}_\infty \) control is based on the stochastic dissipative theory. By establishing the stochastic dissipation of the closed-loop system, the delay-dependent and delay-independent approaches are proposed for designing the output feedback \(\mathcal {H}_\infty \) controller. It is shown that the output feedback \(\mathcal {H}_\infty \) control problem for the stochastic nonlinear time-delay systems can be solved by two delay-involved Hamilton–Jacobi inequalities. A numerical example is provided to illustrate the effectiveness of the proposed methods.  相似文献   

7.
8.
9.
10.
In this paper, the stability conditions and chaotic behaviors of new different fractional orders of reverse butterfly-shaped dynamical system are analytically and numerically investigated. Designing an appropriate feedback controller, the fractional order chaotic system is synchronized. Applying the synchronized fractional order systems in digital cryptography, a well secured key system is obtained. The numerical simulations are given to validate the correctness of the proposed synchronized fractional order chaotic systems and proposed key system.  相似文献   

11.
We propose and justify algorithms for partial and complete averaging of systems of discrete equations and inclusions. On the basis of the averaging schemes obtained, we construct algorithms for the numerical asymptotic solution of problems of optimal control for discrete systems.Translated from Neliniini Kolyvannya, Vol. 7, No. 2, pp. 241–254, April–June, 2004.  相似文献   

12.
Nonlinear Dynamics - In this paper, a new robust optimal control strategy is presented to synchronize a class of fractional-order chaotic systems with unknown fractional orders, uncertain dynamics...  相似文献   

13.
This paper develops the stability analysis and delay-dependent \(\mathcal {H}_{\infty }\) control synthesis for linear parameter-varying (LPV) systems with time-varying state delays. On the basis of the Finsler’s lemma, sufficient conditions on \(\mathcal {H}_{\infty }\) performance analysis are formulated in terms of parameterized linear matrix inequalities. The interesting annihilator matrix is constituted by time-varying parameters of LPV systems to reduce the conservatism. A numerical example is presented to confirm the efficiency of the proposed method.  相似文献   

14.
In this paper, the problem of finite-time chaos synchronization between two different uncertain chaotic systems with unknown parameters and input nonlinearities is investigated. It is assumed that both master and slave systems are perturbed by unknown model uncertainties, external disturbances, and fully unknown parameters. Proper update laws are proposed to estimate the systems?? unknown parameters. Based on the update laws and finite-time control technique, a robust adaptive controller is introduced to guarantee the convergence of the slave system trajectories to the trajectories of the master system in a given finite time. Two illustrative examples are presented to illustrate the effectiveness and applicability of the proposed finite-time controller and to validate the theoretical results of the paper.  相似文献   

15.
Mangiacapra  Gennaro  Wittal  Matthew  Capello  Elisa  Nazari  Morad 《Nonlinear dynamics》2022,108(3):2127-2146
Nonlinear Dynamics - This paper presents a novel rigid-body navigation and control architecture within the framework of special Euclidean group $$\mathsf {SE(3)}$$ and its tangent bundle $$\mathsf...  相似文献   

16.
17.
18.
Sun  Zong-Yao  Zhang  Kai  Chen  Chih-Chiang  Meng  Qinghua 《Nonlinear dynamics》2022,109(3):1617-1627
Nonlinear Dynamics - This paper investigates the problem of robust output feedback control for a class of time-delay nonlinear systems with unknown continuous time varying output function. Unlike...  相似文献   

19.
20.
Dong  Shiyu  Zhu  Hong  Zhong  Shouming  Shi  Kaibo  Zeng  Yong 《Nonlinear dynamics》2021,105(4):3211-3223
Nonlinear Dynamics - In this work, the problem of hybrid control strategy for delayed neural networks is investigated via an impulsive-based bilateral looped-functional (IBBLF) approach. Firstly, a...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号