首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Let (XG) be a G-action topological dynamical system (t.d.s. for short), where G is a countably infinite discrete amenable group. In this paper, we study the topological pressure of the sets of generic points. We show that when the system satisfies the almost specification property, for any G-invariant measure \(\mu \) and any continuous map \(\varphi \),
$$\begin{aligned} P\left( X_{\mu },\varphi ,\{F_n\}\right) = h_{\mu }(X)+\int \varphi d\mu , \end{aligned}$$
where \(\{F_n\}\) is a Følner sequence, \(X_{\mu }\) is the set of generic points of \(\mu \) with respect to (w.r.t. for short) \(\{F_n\}\), \(P(X_{\mu },\varphi ,\{F_n\})\) is the topological pressure of \(X_{\mu }\) for \(\varphi \) w.r.t. \(\{F_n\}\) and \(h_{\mu }(X)\) is the measure-theoretic entropy.
  相似文献   

2.
In this paper we study the limit as \(\varepsilon \rightarrow 0\) of the singularly perturbed second order equation \(\varepsilon ^2 \ddot{u}_\varepsilon + \nabla _{\!x} V(t,u_\varepsilon (t))=0\), where V(tx) is a potential. We assume that \(u_0(t)\) is one of its equilibrium points such that \(\nabla _{\!x}V(t,u_0(t))=0\) and \(\nabla _{\!x}^2V(t,u_0(t))>0\). We find that, under suitable initial data, the solutions \(u_\varepsilon \) converge uniformly to \(u_0\), by imposing mild hypotheses on V. A counterexample shows that they cannot be weakened.  相似文献   

3.
A modular multi-spherical soft robot, which consists of five deformable spherical cells, two friction feet, the electromagnetic valves and the control systems, is constructed. According to the deflating action and the inflating action of the spherical cells, the size and the shape of each spherical cell can be changed. With two friction feet sticking with the ground in turn, the soft robot can move forwards, make a turning motion and avoid the obstacle. This paper creates a nonlinear relation between the pressure P and the inflation radius \(\left( r \right) \) at different original radii \(\left( {r_0 } \right) \) and obtains the inflation or deflation velocity \(v_r \). Six inflating and deflating steps to finish the turning motion are presented. Based on the geometric relationship between the inflation radius (r) and the original radius \((r_0 )\) of each cell, the nonlinear turning process is described to control the center positions (x, y, z) of the spherical cell. Last, a simulation and an experiment of five spherical cells are shown to emulate the turning process. Experiment results show that the robot has a maximum turning capability of \(20{^{\circ }}\) in one period.  相似文献   

4.
Multivariate multiscale sample entropy (MMSE) is a robust method to detect the complexity of multivariate system. It is evaluated for a certain value of tolerance parameter r which is mainly calculated from common acknowledged range. This kind of selection of r is not suitable for short-term time series and may lead to the unreliable detection. To reduce the impact of limited range of r, we apply cumulative histogram method to estimate the range of r. It is data-driven and needs no parameters. Moreover, we use secondary statistics, AvgMMSE and SDMMSE rather than the single value of MMSE to detect the complexity of signals and differentiate them. Several time series, either generated from chaotic or stochastic systems, are analyzed to demonstrate the approach. The core achievement of this experiment is the stability and classification for short-term time series. Then we apply this method to financial time series. Empirical results show that the proposed method is vigorous enough to classify different stock indices over different periods.  相似文献   

5.
In this paper we focused our study on derived from Anosov diffeomorphisms (DA diffeomorphisms ) of the torus \(\mathbb {T}^3,\) it is, an absolute partially hyperbolic diffeomorphism on \(\mathbb {T}^3\) homotopic to a linear Anosov automorphism of the \(\mathbb {T}^3.\) We can prove that if \(f: \mathbb {T}^3 \rightarrow \mathbb {T}^3 \) is a volume preserving DA diffeomorphism homotopic to a linear Anosov A,  such that the center Lyapunov exponent satisfies \(\lambda ^c_f(x) > \lambda ^c_A > 0,\) with x belongs to a positive volume set, then the center foliation of f is non absolutely continuous. We construct a new open class U of non Anosov and volume preserving DA diffeomorphisms, satisfying the property \(\lambda ^c_f(x) > \lambda ^c_A > 0\) for \(m-\)almost everywhere \(x \in \mathbb {T}^3.\) Particularly for every \(f \in U,\) the center foliation of f is non absolutely continuous.  相似文献   

6.
The effective viscosity of a dilute emulsion of spherical drops containing a soluble surfactant is calculated under a linear creeping flow. It is assumed that convection of surfactant is small relative to diffusion, and thus the Peclet number, Pe, is small. We calculate the effective viscosity of the emulsion to \(\mathcal {O}(Pe\phi \mu )\), where ? is the small volume fraction of the dispersed drops and μ is the viscosity of the surfactant-free suspending fluid. This \(\mathcal {O}(Pe\phi \mu )\) contribution is a sensitive function of the bulk and interfacial surfactant transport. Specifically, soluble surfactant molecules diffuse from the bulk to the interface and then adsorb to the interface. The ratio of the time scale for bulk diffusion to the time scale for adsorption to the interface is quantified by a Damkohler number, Da. The adsorption of surfactant to the interface may cause a significant decrease in the bulk concentration, which is known as depletion. The impact of depletion is characterized by two parameters: h, which is a dimensionless depletion depth; and k, which is the ratio of the desorption time scale to the adsorption time scale. We analytically determine how the \(\mathcal {O}(Pe\phi \mu )\) contribution to the effective viscosity depends on h, k, and Da. Surprisingly, for certain regimes in the h ? k ? Da parameter space, we predict the effective viscosity of the emulsion to be greater than Einstein’s result for the viscosity of a suspension of rigid spheres. Large Marangoni stresses driven by convective transport of soluble surfactant molecules are responsible for this result.  相似文献   

7.
This study considers the quasilinear elliptic equation with a damping term,
$$\begin{aligned} \text {div}(D(u)\nabla u) + \frac{k(|{\mathbf {x}}|)}{|{\mathbf {x}}|}\,{\mathbf {x}}\cdot (D(u)\nabla u) + \omega ^2\big (|u|^{p-2}u + |u|^{q-2}u\big ) = 0, \end{aligned}$$
where \({\mathbf {x}}\) is an N-dimensional vector in \(\big \{{\mathbf {x}} \in \mathbb {R}^N: |{\mathbf {x}}| \ge \alpha \big \}\) for some \(\alpha > 0\) and \(N \in {\mathbb {N}}\setminus \{1\}\); \(D(u) = |\nabla u|^{p-2} + |\nabla u|^{q-2}\) with \(1 < q \le p\); k is a nonnegative and locally integrable function on \([\alpha ,\infty )\); and \(\omega \) is a positive constant. A necessary and sufficient condition is given for all radially symmetric solutions to converge to zero as \(|{\mathbf {x}}|\rightarrow \infty \). Our necessary and sufficient condition is expressed by an improper integral related to the damping coefficient k. The case that k is a power function is explained in detail.
  相似文献   

8.
The long-time asymptotics is analyzed for all finite energy solutions to a model\(\mathbf{U}(1)\)-invariant nonlinear Klein–Gordon equation in one dimension, with the nonlinearity concentrated at a single point: each finite energy solution converges as t→ ± ∞ to the set of all “nonlinear eigenfunctions” of the form ψ(x)e?iω t. The global attraction is caused by the nonlinear energy transfer from lower harmonics to the continuous spectrum and subsequent dispersive radiation.We justify this mechanism by the following novel strategy based on inflation of spectrum by the nonlinearity. We show that any omega-limit trajectory has the time spectrum in the spectral gap [ ? m,m] and satisfies the original equation. This equation implies the key spectral inclusion for spectrum of the nonlinear term. Then the application of the Titchmarsh convolution theorem reduces the spectrum of each omega-limit trajectory to a single harmonic \(\omega\in[-m,m]\).The research is inspired by Bohr’s postulate on quantum transitions and Schrödinger’s identification of the quantum stationary states to the nonlinear eigenfunctions of the coupled\(\mathbf{U}(1)\)-invariant Maxwell–Schrödinger and Maxwell–Dirac equations.  相似文献   

9.
Motivated by some recent studies on the Allen–Cahn phase transition model with a periodic nonautonomous term, we prove the existence of complex dynamics for the second order equation
$$\begin{aligned} -\ddot{x} + \left( 1 + \varepsilon ^{-1} A(t)\right) G'(x) = 0, \end{aligned}$$
where A(t) is a nonnegative T-periodic function and \(\varepsilon > 0\) is sufficiently small. More precisely, we find a full symbolic dynamics made by solutions which oscillate between any two different strict local minima \(x_0\) and \(x_1\) of G(x). Such solutions stay close to \(x_0\) or \(x_1\) in some fixed intervals, according to any prescribed coin tossing sequence. For convenience in the exposition we consider (without loss of generality) the case \(x_0 =0\) and \(x_1 = 1\).
  相似文献   

10.
In this paper, a generalized higher-order variable-coefficient nonlinear Schrödinger equation is studied, which describes the propagation of subpicosecond or femtosecond pulses in an inhomogeneous optical fiber. We derive a set of the integrable constraints on the variable coefficients. Under those constraints, via the symbolic computation and modified Hirota method, bilinear equations, one-, two-,three-soliton solutions and dromion-like structures are obtained. Properties and interactions for the solitons are studied: (a) effects on the solitons resulting from the wave number k, third-order dispersion \(\delta _1(z)\), group velocity dispersion \(\alpha (z)\), gain/loss \(\varGamma _2(z)\) and group-velocity-related \(\gamma (z)\) are discussed analytically and graphically where z is the normalized propagation distance along the fiber; (b) bound state with different values of \(\alpha (z)\), \(\delta _1(z)\), \(\gamma (z)\) and \(\varGamma _2(z)\) are presented where some periodic or quasiperiodic formulae are derived. Interactions between the two solitons and between the bound states and a single soliton are, respectively, discussed; and (c) single, double and triple dromion-like structures with different values of \(\alpha (z)\), \(\delta _1(z)\), \(\gamma (z)\) are also presented, distortions of which are found to be determined by those variable coefficients.  相似文献   

11.
We consider the system Δu ? W u (u) = 0, where \({u : \mathbb{R}^n \to \mathbb{R}^n}\) , for a class of potentials \({W : \mathbb{R}^n \to \mathbb{R}}\) that possess several global minima and are invariant under a general finite reflection group G. We establish existence of nontrivial G-equivariant entire solutions connecting the global minima of W along certain directions at infinity.  相似文献   

12.
We investigate a reaction–diffusion–advection equation of the form \(u_t-u_{xx}+\beta u_x=f(u)\) \((t>0,\,0<x<h(t))\) with mixed boundary condition at \(x=0\) and Stefan free boundary condition at \(x=h(t)\). Such a model may be applied to describe the dynamical process of a new or invasive species adopting a combination of random movement and advection upward or downward along the resource gradient, with the free boundary representing the expanding front. The goal of this paper is to understand the effect of advection environment and no flux across the left boundary on the dynamics of this species. For the case \(|\beta |<c_0\), we first derive the spreading–vanishing dichotomy and sharp threshold for spreading and vanishing, and then provide a much sharper estimate for the spreading speed of h(t) and the uniform convergence of u(tx) when spreading happens. For the case \(|\beta |\ge c_0\), some results concerning virtual spreading, vanishing and virtual vanishing are obtained. Here \(c_0\) is the minimal speed of traveling waves of the differential equation.  相似文献   

13.
In order to experimentally study whether or not the density ratio σ substantially affects flame displacement speed at low and moderate turbulent intensities, two stoichiometric methane/oxygen/nitrogen mixtures characterized by the same laminar flame speed S L = 0.36 m/s, but substantially different σ were designed using (i) preheating from T u = 298 to 423 K in order to increase S L , but to decrease σ, and (ii) dilution with nitrogen in order to further decrease σ and to reduce S L back to the initial value. As a result, the density ratio was reduced from 7.52 to 4.95. In both reference and preheated/diluted cases, direct images of statistically spherical laminar and turbulent flames that expanded after spark ignition in the center of a large 3D cruciform burner were recorded and processed in order to evaluate the mean flame radius \(\bar {R}_{f}\left (t \right )\) and flame displacement speed \(S_{t}=\sigma ^{-1}{d\bar {R}_{f}} \left / \right . {dt}\) with respect to unburned gas. The use of two counter-rotating fans and perforated plates for near-isotropic turbulence generation allowed us to vary the rms turbulent velocity \(u^{\prime }\) by changing the fan frequency. In this study, \(u^{\prime }\) was varied from 0.14 to 1.39 m/s. For each set of initial conditions (two different mixture compositions, two different temperatures T u , and six different \(u^{\prime })\), five (respectively, three) statistically equivalent runs were performed in turbulent (respectively, laminar) environment. The obtained experimental data do not show any significant effect of the density ratio on S t . Moreover, the flame displacement speeds measured at u′/S L = 0.4 are close to the laminar flame speeds in all investigated cases. These results imply, in particular, a minor effect of the density ratio on flame displacement speed in spark ignition engines and support simulations of the engine combustion using models that (i) do not allow for effects of the density ratio on S t and (ii) have been validated against experimental data obtained under the room conditions, i.e. at higher σ.  相似文献   

14.
Under different assumptions on the potential functions b and c, we study the fractional equation \(\left( I-\varDelta \right) ^{\alpha } u = \lambda b(x) |u|^{p-2}u+c(x)|u|^{q-2}u\) in \(\mathbb {R}^N\). Our existence results are based on compact embedding properties for weighted spaces.  相似文献   

15.
In the first part of this paper, we considered the exact statement of the plane elasticity problem in displacements for strips made of various materials (problem A, an isotropic material; problem B, an orthotropic material with 2G 12 < √E 1 E 2; problem C, an orthotropic material with 2G 12 > √E 1 E 2). Further, we stated and solved the boundary layer problem (the problem on a solution decaying away from the boundary) for a sandwich strip of regular structure consisting of isotropic layers (problem AA). In the present paper, we use the solution of the plane problem to consider the problem for sandwich strips of regular structure with isotropic face layers and orthotropic filler (problem AB).  相似文献   

16.
We prove that if \(f:G\rightarrow G\) is a map on a topological graph G such that the inverse limit \(\varprojlim (G,f)\) is hereditarily indecomposable, and entropy of f is positive, then there exists an entropy set with infinite topological entropy. When G is the circle and the degree of f is positive then the entropy is always infinite and the rotation set of f is nondegenerate. This shows that the Anosov-Katok type constructions of the pseudo-circle as a minimal set in volume-preserving smooth dynamical systems, or in complex dynamics, obtained previously by Handel, Herman and Chéritat cannot be modeled on inverse limits. This also extends a previous result of Mouron who proved that if \(G=[0,1]\), then \(h(f)\in \{0,\infty \}\), and combined with a result of Ito shows that certain dynamical systems on compact finite-dimensional Riemannian manifolds must either have zero entropy on their invariant sets or be non-differentiable.  相似文献   

17.
Homogeneous bounded maps B on cones \(X_+\) of ordered normed vector spaces X allow the definition of a cone spectral radius which is analogous to the spectral radius of a bounded linear operator. If \(X_+\) is complete and B is also order-preserving, conditions are derived for B to have a homogeneous order-preserving eigenfunctional \(\theta : X_+ \rightarrow { \mathbb {R}}_+\) associated with the cone spectral radius in analogy to one part of the Krein–Rutman theorem. Since homogeneous B arise as first order approximations at 0 of maps that describe the year-to-year development of sexually reproducing populations, these eigenfunctionals are an important ingredient in the persistence theory of structured populations with mating.  相似文献   

18.
We consider the well-known Sprott A system, which depends on a single real parameter a and, for \(a=1\), was shown to present a hidden chaotic attractor. We study the formation of hidden chaotic attractors as well as the formation of nested invariant tori in this system, performing a bifurcation analysis by varying the parameter a. We prove that, for \(a=0\), the Sprott A system has a line of equilibria in the z-axis, the phase space is foliated by concentric invariant spheres with two equilibrium points located at the south and north poles, and each one of these spheres is filled by heteroclinic orbits of south pole–north pole type. For \(a\ne 0\), the spheres are no longer invariant algebraic surfaces and the heteroclinic orbits are destroyed. We do a detailed numerical study for \(a>0\) small, showing that small nested invariant tori and a limit set, which encompasses these tori and is the \(\alpha \)- and \(\omega \)-limit set of almost all orbits in the phase space, are formed in a neighborhood of the origin. As the parameter a increases, this limit set evolves into a hidden chaotic attractor, which coexists with the nested invariant tori. In particular, we find hidden chaotic attractors for \(a<1\). Furthermore, we make a global analysis of Sprott A system, including the dynamics at infinity via the Poincaré compactification, showing that for \(a>0\), the only orbit which escapes to infinity is the one contained in the z-axis and all other orbits are either homoclinic to a limit set (or to a hidden chaotic attractor, depending on the value of a), or contained on an invariant torus, depending on the initial condition considered.  相似文献   

19.
The two-dimensional, laminar, unsteady natural convection flow in a square enclosure filled with aluminum oxide (\(\hbox {Al}_{2} \hbox {O}_{3}\))–water nanofluid under the influence of a magnetic field, is considered numerically. The nanofluid is considered as Newtonian and incompressible, the nanoparticles and water are assumed to be in thermal equilibrium. The mathematical modelling results in a coupled nonlinear system of partial differential equations. The equations are solved using finite element method (FEM) in space, whereas, the implicit backward difference scheme is used in time direction. The results are obtained for Rayleigh (Ra), Hartmann (Ha) numbers, and nanoparticles volume fractions (\(\phi\)), in the ranges of \(10^3 \le Ra \le 10^7\), \(0\le Ha \le 500\) and \(0 \le \phi \le 0.2\), respectively. The streamlines and microrotation contours are observed to show similar behaviors with altering magnitudes. For low Ra values, when \(Ha=0\), symmetric vortices near the walls and a central vortex in opposite direction are observed in vorticity. As Ra increases, the central vortex splits into two due to the circulation in the effect of the buoyant flow. Boundary layer formation is observed when Ha increases for almost all Rayleigh numbers in both streamlines and vorticity. The isotherms have horizontal profiles for high Ra values owing to convective dominance over conduction. As Ha is increased, the convection effect is reduced, and isotherms tend to have vertical profiles. This study presents the first FEM application for solving highly nonlinear PDEs defining micropolar nanofluid flow especially for large values of Rayleigh and Hartmann numbers.  相似文献   

20.
In this work, we consider a special choice of sliding vector field on the intersection of two co-dimension 1 manifolds. The proposed vector field, which belongs to the class of Filippov vector fields, will be called moments vector field and we will call moments trajectory the associated solution trajectory. Our main result is to show that the moments vector field is a well defined, and smoothly varying, Filippov sliding vector field on the intersection \(\Sigma \) of two discontinuity manifolds, under general attractivity conditions of \(\Sigma \). We also examine the behavior of the moments trajectory at first order exit points, and show that it exits smoothly at these points. Numerical experiments illustrate our results and contrast the present choice with other choices of Filippov sliding vector field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号