首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The H2 permeation of a supported 2 microm thick Pd48Cu52 membrane was investigated between 373 and 909 K at DeltaP=0.1 MPa. The initial H2 flux was 0.3 mol.m(-2).s(-1) at 723 K with an ideal H2/N2 selectivity better than 5000. The membrane underwent a bcc-fcc (body-centered cubic to face-centered cubic) phase transition between 723 and 873 K resulting in compositional segregation. After reannealing at 723 K the alloy layer reverted to a bcc structure although a small fcc fraction remained behind. The mixed-phase morphology was analyzed combining X-ray diffraction with scanning electron microscopy-energy-dispersive spectroscopic analysis (SEM-EDS) measurements, which revealed micrometer-scale Cu-enriched bcc and Cu-depleted fcc domains. The H2 flux JH2 of the fcc Pd48Cu52 single phase layer prevailing above 873 K could be described by an Arrhenius law with JH2=(7.6+/-4.9) mol.m(-2).s(-1) exp[(-32.9+/-4.5) kJ.mol(-1)/(RT)]. The characterization of the H2 flux in the mixed-phase region required two Arrhenius laws, i.e., JH2=(1.35+/-0.14) mol.m(-2).s(-1) exp[(-10.3+/-0.5) kJ.mol(-1)/(RT)] between 523 and ca. 700 K and JH2=(56.1+/-9.3) mol.m(-2).s(-1) exp[(-25.3+/-0.6) kJ.mol(-1)/(RT)] below 454 K. The H2 flux exhibited a square root pressure dependence above 523 K, but the pressure exponent gradually increased to 0.77 upon cooling to 373 K. The activation energy and pressure dependence in the intermediate temperature range are consistent with a diffusion-limited H2 transport, while the changes of these characteristics at lower temperatures indicate a desorption-limited H2 flux. The prevalence of desorption as the permeation rate-limiting step below 454 K is attributed to the pairing of an extraordinarily high hydrogen diffusivity with a marginal hydrogen solubility in bcc PdCu alloys. These result in an acceleration of the bulk diffusion rate and a deceleration of the desorption rate, respectively, allowing the bulk diffusion rate to surpass the desorption rate up to relatively high temperatures.  相似文献   

2.
Alkylamines (RCH(2)NH(2), R = H, CH(3), C(2)H(5), C(3)H(7), i-C(3)H(7)) have been investigated by dissociative photoionization by threshold photoelectron photoion coincidence spectroscopy (TPEPICO). The 0 K dissociation limits (9.754 +/- 0.008, 9.721 +/- 0.008, 9.702 +/- 0.012, and 9.668 +/- 0.012 eV for R = CH(3), C(2)H(5), C(3)H(7), i-C(3)H(7), respectively) have been determined by preparing energy-selected ions and collecting the fractional abundances of parent and daughter ions. All alkylamine cations produce the methylenimmonium ion, CH(2)NH(2)+, and the corresponding alkyl free radical. Two isodesmic reaction networks have also been constructed. The first one consists of the alkylamine parent molecules, and the other of the alkyl radical photofragments. Reaction heats within the isodesmic networks have been calculated at the CBS-APNO and W1U levels of theory. The two networks are connected by the TPEPICO dissociation energies. The heats of formation of the amines and the alkyl free radicals are then obtained by a modified least-squares fit to minimize the discrepancy between the TPEPICO and the ab initio values. The analysis of the fit reveals that the previous experimental heats of formation are largely accurate, but certain revisions are suggested. Thus, Delta(f)Ho(298K)[CH(3)NH(2)(g)] = -21.8 +/- 1.5 kJ mol-1, Delta(f)Ho(298K)[C(2)H(5)NH(2)(g)] = -50.1 +/- 1.5 kJ mol(-1), Delta(f)Ho(298K)[C(3)H(7)NH(2)(g)] = -70.8 +/- 1.5 kJ mol(-1), Delta(f)Ho(298K)[C(3)H(7)*] = 101.3 +/- 1 kJ mol(-1), and Delta(f)Ho(298K)[i-C(3)H(7)*] = 88.5 +/- 1 kJ mol(-1). The TPEPICO and the ab initio results for butylamine do not agree within 1 kJ mol-1; therefore, no new heat of formation is proposed for butylamine. It is nevertheless indicated that the previous experimental heats of formation of methylamine, propylamine, butylamine, and isobutylamine may have been systematically underestimated. On the other hand, the error in the ethyl radical heat of formation is found to be overestimated and can be decreased to +/- 1 kJ mol(-1); thus, Delta(f)Ho(298K)[C(2)H(5).] = 120.7 +/- 1 kJ mol(-1). On the basis of the data analysis, the heat of formation of the methylenimmonium ion is confirmed to be Delta(f)Ho(298K)[CH(2)NH(2)+] = 750.3 +/- 1 kJ mol(-1).  相似文献   

3.
The effect of temperature and pressure on the water exchange reaction of [Fe(II)(NTA)(H2O)2](-) and [Fe(II)(BADA)(H2O)2](-) (NTA = nitrilotriacetate; BADA = beta-alanindiacetate) was studied by 17O NMR spectroscopy. The [Fe(II)(NTA)(H2O)2](-) complex showed a water exchange rate constant, k(ex), of (3.1 +/- 0.4) x 10(6) s(-1) at 298.2 K and ambient pressure. The activation parameters DeltaH( not equal), DeltaS( not equal) and DeltaV( not equal) for the observed reaction are 43.4 +/- 2.6 kJ mol(-1), + 25 +/- 9 J K(-1) mol(-1) and + 13.2 +/- 0.6 cm(3) mol(-1), respectively. For [Fe(II)(BADA)(H2O)2](-), the water exchange reaction is faster than for the [Fe(II)(NTA)(H2O)2](-) complex with k(ex) = (7.4 +/- 0.4) x 10(6) s(-1) at 298.2 K and ambient pressure. The activation parameters DeltaH( not equal), DeltaS( not equal) and DeltaV( not equal) for the water exchange reaction are 40.3 +/- 2.5 kJ mol(-1), + 22 +/- 9 J K(-1) mol(-1) and + 13.3 +/- 0.8 cm(3) mol(-1), respectively. The effect of pressure on the exchange rate constant is large and very similar for both systems, and the numerical values for DeltaV( not equal) suggest in both cases a limiting dissociative (D) mechanism for the water exchange process.  相似文献   

4.
Combining experimental knowledge with molecular simulations, we investigated the adsorption and separation properties of double-walled carbon nanotubes (DWNTs) against flue/synthetic gas mixture components (e.g. CO(2), CO, N(2), H(2), O(2), and CH(4)) at 300 K. Except molecular H(2), all studied nonpolar adsorbates assemble into single-file chain structures inside DWNTs at operating pressures below 1 MPa. Molecular wires of adsorbed molecules are stabilized by the strong solid-fluid potential generated from the cylindrical carbon walls. CO(2) assembly is formed at very low operating pressures in comparison to all other studied nonpolar adsorbates. The adsorption lock-and-key mechanism results from perfect fitting of rod-shaped CO(2) molecules into the cylindrical carbon pores. The enthalpy of CO(2) adsorption in DWNTs is very high and reaches 50 kJ mol(-1) at 300 K and low pore concentrations. In contrast, adsorption enthalpy at zero coverage is significantly lower for all other studied nonpolar adsorbates, for instance: 35 kJ mol(-1) for CH(4), and 14 kJ mol(-1) for H(2). Applying the ideal adsorption solution theory, we predicted that the internal pores of DWNTs have unusual ability to differentiate CO(2) molecules from other flue/synthetic gas mixture components (e.g. CO, N(2), H(2), O(2), and CH(4)) at ambient operating conditions. Computed equilibrium selectivity for equimolar CO(2)-X binary mixtures (where X: CO, N(2), H(2), O(2), and CH(4)) is very high at low mixture pressures. With an increase in binary mixture pressure, we predicted a decrease in equilibrium separation factor because of the competitive adsorption of the X binary mixture component. We showed that at 300 K and equimolar mixture pressures up to 1 MPa, the CO(2)-X equilibrium separation factor is higher than 10 for all studied binary mixtures, indicating strong preference for CO(2) adsorption. The overall selective properties of DWNTs seem to be superior, which may be beneficial for potential industrial applications of these novel carbon nanostructures.  相似文献   

5.
Reliable thermochemical data for the reaction SO3 + H2O<-->SO3 x H2O (1a) are of crucial importance for an adequate modeling of the homogeneous H2SO4 formation in the atmosphere. We report on high-level quantum chemical calculations to predict the binding energy of the SO3 x H2O complex. The electronic binding energy is accurately computed to De = 40.9+/-1.0 kJ/mol = 9.8+/-0.2 kcal/mol. By using harmonic frequencies from density functional theory calculations (B3LYP/cc-pVTZ and TPSS/def2-TZVP), zero-point and thermal energies were calculated. From these data, we estimate D0 = -Delta H(1a)0(0 K) = 7.7+/-0.5 kcal/mol and Delta H(1a)0(298 K) = -8.3+/-1.0 kcal/mol.  相似文献   

6.
The interaction of water with the BaF2(111) single crystal surface is investigated using the helium atom scattering technique. It is found that H2O forms a long-range ordered two-dimensional (2D) phase with (1 x 1) translational symmetry already after an exposure of 3 L (1 L=10(-6) Torr s) at temperatures below 150 K. The activation energy for desorption of the saturated 2D phase, which is assigned to a bilayer, is estimated to be 46+/-2 kJ mol(-1), corresponding to a desorption temperature of 165 K. The desorption of multilayers was observed at 150 K, consistent with a binding energy of 42+/-2 kJ mol(-1). Before completion and after desorption of the saturated 2D phase, a superstructure consistent with a disordered (square root of 3 x square root of 3)R30 degrees lattice has been observed, which is attributed to the first layer of water with a coverage of one molecule per surface unit cell, in accordance with recent theoretical studies. Desorption of this phase is observed at temperatures above 200 K, consistent with an unexpectedly strong bonding of the molecules to the substrate.  相似文献   

7.
Porous Cu-Cd mixed-metal-organic frameworks [[Cd(NO(3))(2)](2)[(Cu(Pyac)(2)](3)] (M'MOF 1) and [[CdCl(2)][Cu(Pyac)(2)](2)] (M'MOF2) [Cu(Pyac)(2) = bis[3-(4-pyridyl)pentane-2,4-dionato]copper(II)] have been synthesized by the reaction of Cu(Pyac)(2) with Cd(NO(3))(2) and CdCl(2). They are noninterpenetrating 1D ladder and 2D square-grid frameworks, constructed from Cu(Pyac)(2) building blocks with T-shaped Cd(NO(3))(2) nodes and square-planar CdCl(2) nodes, respectively. The 1D ladders and 2D square grids are stacked in ABCABC... and ABCDEF... packings, leading to 2D interconnected channels of ca. 5.7 x 10.2 and 4.1 x 9.8 A in 1 and 1D channels of ca. 8.0 x 8.2 A in 2, respectively. The copper sites in these two M'MOFs are coordinated by solvent molecules and exposed to the pores.  相似文献   

8.
In this work, the aromaticity of pyracylene (2) was investigated from an energetic point of view. The standard enthalpy of hydrogenation of acenaphthylene (1) to acenaphthene (3) at 298.15 K was determined to be minus sign(114.5 +/- 4.2) kJ x mol(-1) in toluene solution and minus sign(107.9 +/- 4.2) kJ x mol(-1) in the gas phase, by combining results of combustion and reaction-solution calorimetry. A direct calorimetric measurement of the standard enthalpy of hydrogenation of pyracylene (2) to pyracene (4) in toluene at 298.15 K gave -(249.9 plus minus 4.6) kJ x mol(-1). The corresponding enthalpy of hydrogenation in the gas phase, computed from the Delta(f)H(o)m(cr) and DeltaH(o)m(sub) values obtained in this work for 2 and 4, was -(236.0 +/- 7.0) kJ x mol(-1). Molecular mechanics calculations (MM3) led to Delta(hyd)H(o)m(1,g) = -110.9 kJ x mol(-1) and Delta(hyd)H(o)m(2,g) = -249.3 kJ x mol(-1) at 298.15 K. Density functional theory calculations [B3LYP/6-311+G(3d,2p)//B3LYP/6-31G(d)] provided Delta(hyd)H(o)m(2,g) = -(244.6 +/- 8.9) kJ x mol(-1) at 298.15 K. The results are put in perspective with discussions concerning the "aromaticity" of pyracylene. It is concluded that, on energetic grounds, pyracylene is a borderline case in terms of aromaticity/antiaromaticity character.  相似文献   

9.
The energetics of the phenolic O-H bond in the three hydroxybenzoic acid isomers and of the intramolecular hydrogen O-H- - -O-C bond in 2-hydroxybenzoic acid, 2-OHBA, were investigated by using a combination of experimental and theoretical methods. The standard molar enthalpies of formation of monoclinic 3- and 4-hydroxybenzoic acids, at 298.15 K, were determined as Delta(f)(3-OHBA, cr) = -593.9 +/- 2.0 kJ x mol(-1) and Delta(f)(4-OHBA, cr) = -597.2 +/- 1.4 kJ x mol(-1), by combustion calorimetry. Calvet drop-sublimation calorimetric measurements on monoclinic samples of 2-, 3-, and 4-OHBA, led to the following enthalpy of sublimation values at 298.15 K: Delta(sub)(2-OHBA) = 94.4 +/- 0.4 kJ x mol(-1), Delta(sub)(3-OHBA) = 118.3 +/- 1.1 kJ x mol(-1), and Delta(sub)(4-OHBA) = 117.0 +/- 0.5 kJ x mol(-1). From the obtained Delta(f)(cr) and Delta(sub) values and the previously reported enthalpy of formation of monoclinic 2-OHBA (-591.7 +/- 1.3 kJ x mol(-1)), it was possible to derive Delta(f)(2-OHBA, g) = -497.3 +/- 1.4 kJ x mol(-1), Delta(f)(3-OHBA, g) = -475.6 +/- 2.3 kJ x mol(-1), and Delta(f)(4-OHBA, cr) = -480.2 +/- 1.5 kJ x mol(-1). These values, together with the enthalpies of isodesmic and isogyric gas-phase reactions predicted by density functional theory (B3PW91/aug-cc-pVDZ, MPW1PW91/aug-cc-pVDZ, and MPW1PW91/aug-cc-pVTZ) and the CBS-QMPW1 methods, were used to derive the enthalpies of formation of the gaseous 2-, 3-, and 4-carboxyphenoxyl radicals as (2-HOOCC(6)H(4)O(*), g) = -322.5 +/- 3.0 kJ.mol(-1) Delta(f)(3-HOOCC(6)H(4)O(*), g) = -310.0 +/- 3.0 kJ x mol(-1), and Delta(f)(4-HOOCC(6)H(4)O(*), g) = -318.2 +/- 3.0 kJ x mol(-1). The O-H bond dissociation enthalpies in 2-OHBA, 3-OHBA, and 4-OHBA were 392.8 +/- 3.3, 383.6 +/- 3.8, and 380.0 +/- 3.4 kJ x mol(-1), respectively. Finally, by using the ortho-para method, it was found that the H- - -O intramolecular hydrogen bond in the 2-carboxyphenoxyl radical is 25.7 kJ x mol(-1), which is ca. 6-9 kJ x mol(-1) above the one estimated in its parent (2-OHBA), viz. 20.2 kJ x mol(-1) (theoretical) or 17.1 +/- 2.1 kJ x mol(-1) (experimental).  相似文献   

10.
The reaction of solutions of Fe(Pyac)3 [PyacH=3-(4-pyridyl)-2,4-pentanedione] and AgNO3 produces two types of porous mixed-metal-organic frameworks (M'MOFs). With lower AgNO3 concentrations, the product (M'MOF1) has a 2D honeycomb structure with Ag:Fe=1:1 and pores of ca. 12x16 A. When a higher concentration of AgNO3 is employed, however, the product (M'MOF2) has Ag:Fe=3:2 and a porous 1D ladder structure. A variety of nonpolar solvents serve as guests in M'MOF2: with 1,2-C6H4Cl2, [AgNO3]3[Fe(Pyac)3]2(1,2-C6H4Cl2)5.5 (M'MOF2a); with C6H5Br, [AgNO3]3[Fe(Pyac)3]2(C6H5Br)6 (M'MOF2b). M'MOFs 2a and 2b can be interconverted by treatment with the appropriate solvent, in single-crystal-to-single-crystal transformations.  相似文献   

11.
Two isomorphous 3D metal-organic frameworks, {[Cu2(BPnDC)2(bpy)].8 DMF.6 H2O}n (1) and {[Zn2(BPnDC)2(dabco)].13 DMF.3 H2O}n (2), have been prepared by the solvothermal reactions of benzophenone 4,4'-dicarboxylic acid (H2BPnDC) with Cu(NO3)(2).2.5 H2O and 4,4'-bipyridine (bpy), and with Zn(NO3)(2).6 H2O and 4-diazabicyclo[2.2.2]octane (dabco), respectively. Compounds 1 and 2 are composed of paddle-wheel {M2(O2CR)4} cluster units, and they generate 2D channels with two different large pores (effective size of larger pore: 18.2 A for 1, 11.4 A for 2). The framework structure of desolvated solid, [Cu2(BPnDC)2(bpy)]n (SNU-6; SNU=Seoul National University), is the same as that of 1, as evidenced by powder X-ray diffraction patterns. SNU-6 exhibits high permanent porosity (1.05 cm3 g(-1)) with high Langmuir surface area (2910 m2 g(-1)). It shows high H2 gas storage capacity (1.68 wt % at 77 K and 1 atm; 4.87 wt % (excess) and 10.0 wt % (total) at 77 K and 70 bar) with high isosteric heat (7.74 kJ mol(-1)) of H2 adsorption as well as high CO2 adsorption capability (113.8 wt % at 195 K and 1 atm). Compound 2 undergoes a single-crystal-to-single-crystal transformation on guest exchange with n-hexane to provide {[Zn2(BPnDC)2(dabco)].6 (n-hexane).3 H2O}n (2hexane). The transformation involves dynamic motion of the molecular components in the crystal, mainly a bending motion of the square planes of the paddle-wheel units resulting from rotational rearrangement of phenyl rings and carboxylate planes of BPnDC2-.  相似文献   

12.
The compound CpRh(C(2)H(3)CO(2)(t)Bu)(2) 1 has been synthesised as a mixture of two pairs of interconverting isomers which differ in the relative orientations of the alkene substituents. The four isomers have been fully characterised by NMR spectroscopy. When complex 1 is photolysed in the presence of a silane, HSiR(2)R'R(2)R'= Et(3), Me(3), HEt(2), (OMe)(3) and Me(2)Cl] the corresponding Si-H oxidative addition products CpRh(SiR(2)R')(H)(C(2)H(3)CO(2)(t)Bu) and CpRh(H)(2)(SiR(2)R')(2) are formed. The Rh(III) complexes CpRh(SiR(2)R')(H)(C(2)H(3)CO(2)(t)Bu) exist in two isomeric forms of comparable energy which interconvert in an intramolecular process that does not involve a reversible [1,3] hydride or [1,3] silyl migration. The hydride (1)H NMR resonances for these species consequently broaden before coalescing into a single peak. For R(2)R'= Et(3), the activation parameters for interchange from the major to minor isomer were Delta H++= 60.2 +/- 2 kJ mol(-1) and Delta S++= 8 +/- 9 J mol(-1) K(-1), while for R(2)R'= Me(3) and Et(2)H, Delta H++= 61.5 +/- 1 kJ mol(-1), Delta S++= 6 +/- 5 J mol(-1) K(-1), and Delta H++= 61.8 +/- 3 kJ mol(-1), Delta S++= 12 +/- 9 J mol(-1) K(-1) respectively for conversion from the major isomer to the minor. For these complexes an eta(2)-Rh-H-Si transition state or intermediate is consistent with the evidence. When R(2)R'=(OMe)(3) and Me(2)Cl the change in appearance of the hydride resonances is more complex, with the activation parameters for interchange from the major to minor isomer for the former species being Delta H++= 78.3 +/- 2 kJ mol(-1) and Delta S++= 30 +/- 7 J mol(-1) K(-1) while for Me(2)Cl the barrier proved too high to measure before decomposition occurred. The complex spectral changes could be simulated when a discrete eta(2)-Rh-H-Si intermediate was involved in the isomer interconversion process and hence silane rotation in all these systems is proposed to involve two isomers of CpRh(eta(2)-HSiR(2)R')(C(2)H(3)CO(2)(t)Bu).  相似文献   

13.
The 0 K dissociative ionization onsets of C2H3X --> C2H3(+) + X (X = Cl, I) are measured by threshold photoelectron-photoion coincidence spectroscopy. The heats of formation of C2H3Cl (Delta H(f,0K)(0) = 30.2 +/- 3.2 kJ mol(-1) and Delta(H f,298K)(0) = 22.6 +/- 3.2 kJ mol(-1)) and C2H3I (Delta(H f,0K)(0) = 140.2 +/- 3.2 kJ mol(-1) and Delta(H f,298K)(0) = 131.2 +/- 3.2 kJ mol(-1)) and C- X bond dissociation enthalpies as well as those of their ions are determined. The data help resolve a longstanding discrepancy among experimental values of the vinyl chloride heat of formation, which now agrees with the latest theoretical determination. The reported vinyl iodide heat of formation is the first reliable experimental determination. Additionally, the adiabatic ionization energy of C2H3I (9.32 +/- 0.01 eV) is measured by threshold photoelectron spectroscopy.  相似文献   

14.
The dicopper(I) complex [Cu2(MeL66)]2+ (where MeL66 is the hexadentate ligand 3,5-bis-{bis-[2-(1-methyl-1H-benzimidazol-2-yl)-ethyl]-amino}-meth ylbenzene) reacts reversibly with dioxygen at low temperature to form a mu-peroxo adduct. Kinetic studies of O2 binding carried out in acetone in the temperature range from -80 to -55 degrees C yielded the activation parameters DeltaH1(not equal) = 40.4 +/- 2.2 kJ mol(-1), DeltaS1)(not equal) = -41.4 +/- 10.8 J K(-1) mol(-1) and DeltaH(-1)(not equal) = 72.5 +/- 2.4 kJ mol(-1), DeltaS(-1)(not equal) = 46.7 +/- 11.1 J K(-1) mol(-1) for the forward and reverse reaction, respectively, and the binding parameters of O2 DeltaH degrees = -32.2 +/- 2.2 kJ mol(-1) and DeltaS degrees = -88.1 +/- 10.7 J K(-1) mol(-1). The hydroxylation of a series of p-substituted phenolate salts by [Cu2(MeL66)O2]2+ studied in acetone at -55 degrees C indicates that the reaction occurs with an electrophilic aromatic substitution mechanism, with a Hammett constant rho = -1.84. The temperature dependence of the phenol hydroxylation was studied between -84 and -70 degrees C for a range of sodium p-cyanophenolate concentrations. The rate plots were hyperbolic and enabled to derive the activation parameters for the monophenolase reaction DeltaH(not equal)ox = 29.1 +/- 3.0 kJ mol(-1), DeltaS(not equal)ox = -115 +/- 15 J K(-1) mol(-1), and the binding parameters of the phenolate to the mu-peroxo species DeltaH degrees(b) = -8.1 +/- 1.2 kJ mol(-1) and DeltaS degrees(b) = -8.9 +/- 6.2 J K(-1) mol(-1). Thus, the complete set of kinetic and thermodynamic parameters for the two separate steps of O2 binding and phenol hydroxylation have been obtained for [Cu2(MeL66)]2+.  相似文献   

15.
The laser flash photolysis resonance fluorescence technique was used to monitor atomic Cl kinetics. Loss of Cl following photolysis of CCl4 and NaCl was used to determine k(Cl + C6H6) = 6.4 x 10(-12) exp(-18.1 kJ mol(-1)/RT) cm(3) molecule(-1) s(-1) over 578-922 K and k(Cl + C6D6) = 6.2 x 10(-12) exp(-22.8 kJ mol(-1)/RT) cm(3) molecule(-1) s(-1) over 635-922 K. Inclusion of literature data at room temperature leads to a recommendation of k(Cl + C6H6) = 6.1 x 10(-11) exp(-31.6 kJ mol(-1)/RT) cm(3) molecule(-1) s(-1) for 296-922 K. Monitoring growth of Cl during the reaction of phenyl with HCl led to k(C6H5 + HCl) = 1.14 x 10(-12) exp(+5.2 kJ mol(-1)/RT) cm(3) molecule(-1) s(-1) over 294-748 K, k(C6H5 + DCl) = 7.7 x 10(-13) exp(+4.9 kJ mol(-1)/RT) cm(3) molecule(-1) s(-1) over 292-546 K, an approximate k(C6H5 + C6H5I) = 2 x 10(-11) cm(3) molecule(-1) s(-1) over 300-750 K, and an upper limit k(Cl + C6H5I) < or = 5.3 x 10(-12) exp(+2.8 kJ mol(-1)/RT) cm(3) molecule(-1) s(-1) over 300-750 K. Confidence limits are discussed in the text. Third-law analysis of the equilibrium constant yields the bond dissociation enthalpy D(298)(C6H5-H) = 472.1 +/- 2.5 kJ mol(-1) and thus the enthalpy of formation Delta(f)H(298)(C6H5) = 337.0 +/- 2.5 kJ mol(-1).  相似文献   

16.
A new three-dimensional microporous metal-organic framework Cu(BDC-OH)(4,4'-bipy)·G(x) (UTSA-15; H(2)BDC-OH = 2-hydroxy-benzenedicarboxylic acid, 4,4'-bipy =4,4'-bipyridine, G = guest molecules) with functional -OH groups on the pore surfaces was solvothermally synthesized and structurally characterized. UTSA-15 features a three-dimensional structure having 2D intercrossed channels of about 4.1 × 7.8 and 3.7 × 5.1 ?(2), respectively. The small pores and the functional -OH groups on the pore surfaces within the activated UTSA-15a have enabled their strong interactions with CO(2) and C(2)H(2) which have been revealed in their large adsorption enthalpies of 39.5 and 40.6 kJ/mol, respectively, highlighting UTSA-15a as the highly selective microporous metal-organic framework for the CO(2)/CH(4) and C(2)H(2)/CH(4) gas separation with separation selectivity of 24.2 and 55.6, respectively, at 296 K.  相似文献   

17.
[reaction: see text] This study is a multinational, multidisciplinary contribution to the thermochemistry of dimethyl1,4-cubanedicarboxylate and the corresponding isomeric, cuneane derivative and provides both structural and thermochemical information regarding the rearrangement of dimethyl 1,4-cubanedicarboxylate to dimethyl 2,6-cuneanedicarboxylate. The enthalpies of formation in the condensed phase at T = 298.15 K of dimethyl 1,4-cubanedicarboxylate (dimethyl pentacyclo[4.2.0.0.(2,5)0.(3,8)0(4,7)]octane-1,4-dicarboxylate) and dimethyl 2,6-cuneanedicarboxylate (dimethyl pentacyclo[3.3.0.0.(2,4)0.(3,7)0(6,8)]octane-2,6-dicarboxylate) have been determined by combustion calorimetry, delta(f) H(o)m (cr)/kJ x mol(-1) = -232.62 +/- 5.84 and -413.02 +/- 5.16, respectively. The enthalpies of sublimation have been evaluated by combining vaporization enthalpies evaluated by correlation-gas chromatography and fusion enthalpies measured by differential scanning calorimetry and adjusted to T = 298.15 K, delta(cr) (g)Hm (298.15 K)/kJ x mol(-1) = 117.2 +/- 3.9 and 106.8 +/- 3.0, respectively. Combination of these two enthalpies resulted in delta(f) H(o)m (g., 298.15 K)/kJ x mol(-1) of -115.4 +/- 7.0 for dimethyl 1,4-cubanedicarboxylate and -306.2 +/- 6.0 for dimethyl 2,6-cuneanedicarboxylate. These measurements, accompanied by quantum chemical calculations, resulted in values of delta(f) Hm (g, 298.15 K) = 613.0 +/- 9.5 kJ x mol(-1) for cubane and 436.4 +/- 8.8 kJ x mol(-1) for cuneane. From these enthalpies of formation, strain enthalpies of 681.0 +/- 9.8 and 504.4 +/- 9.1 kJ x mol(-1) were calculated for cubane and cuneane by means of isodesmic reactions, respectively. Crystals of dimethyl 2,6-cuneanedicarboxylate are disordered; the substitution pattern and structure have been confirmed by determination of the X-ray crystal structure of the corresponding diacid.  相似文献   

18.
The vaporization of SnCl2(s) was investigated in the temperature range between 382 and 504 K by the use of Knudsen effusion mass spectrometry. The Sn+, SnCl+, SnCl2+, Sn2Cl3+, and Sn2Cl4+ ions were detected in the mass spectrum of the equilibrium vapor. The SnCl2(g) and Sn2Cl4(g) gaseous species were identified, and their partial pressures were determined. The structure and vibrational properties of both species and corresponding fragmentation products were studied applying density functional theory and second-order M?ller-Plesset perturbation theoretical approaches. Molecular parameters yielded thermodynamic functions by the use of statistical thermodynamics. The sublimation enthalpies of SnCl2(g) and Sn2Cl4(g) at 298 K resulting from the second- and third-law methods are evaluated as 130.9 +/- 6.2 kJ mol(-1) and 155.8 +/- 7.3 kJ mol(-1), respectively. The enthalpy changes of the dissociation reactions Sn2Cl4(g) = 2 SnCl2(g) were obtained as delta(d)H degrees(298) = 106.8 +/- 6.2 kJ mol(-1). The corresponding theoretical value amounts to 103.4 kJ mol(-1). The change of monomer properties due to the dimerization reaction is also discussed.  相似文献   

19.
The structure of [Cu(aq)]2+ has been investigated by using full multiple-scattering theoretical (MXAN) analysis of the copper K-edge X-ray absorption (XAS) spectrum and density functional theory (DFT) to test both ideal Td and square-planar four-coordinate, five-coordinate square-pyramidal, and six-coordinate octahedral [Cu(aq)]2+ models. The best fit was an elongated five-coordinate square pyramid with four Cu-O(eq) bonds (2 x 1.98 +/- 0.03 A and 2 x 1.95 +/- 0.03 A) and a long Cu-O(ax) bond (2.35 +/- 0.05 A). The four equatorial ligands were D2d-distorted from the mean equatorial plane by +/-(17 +/- 4) degrees, so that the overall symmetry of [Cu(H2O)5]2+ is C2v. The four-coordinate MXAN fit was nearly as good, but the water ligands (4 x 1.96 +/- 0.02 A) migrated +/-(13 +/- 4) degrees from the mean equatorial plane, making the [Cu(H2O)4]2+ model again D2d-distorted. Spectroscopically calibrated DFT calculations were carried out on the C2v elongate square-pyramidal and D2d-distorted four-coordinate MXAN copper models, providing comparative electronic structures of the experimentally observed geometries. These calculations showed 0.85e spin on Cu(II) and 0.03e electron spin on each of the four equatorial water oxygens. All covalent bonding was restricted to the equatorial plane. In the square-pyramidal model, the electrostatic Cu-O(ax) bond was worth only 96.8 kJ mol(-1), compared to 304.6 kJ mol(-1) for each Cu-O(eq) bond. Both MXAN and DFT showed the potential well of the axial bond to be broad and flat, allowing large low-energy excursions. The irregular geometry and D2d-distorted equatorial ligand set sustained by unconstrained [Cu(H2O)5]2+ warrants caution in drawing conclusions regarding structural preferences from small molecule crystal structures and raises questions about the site-structural basis of the rack-induced bonding hypothesis of blue copper proteins. Further, previously neglected protein folding thermodynamic consequences of the rack-bonding hypothesis indicate an experimental disconfirmation.  相似文献   

20.
The Pt(111) electrode is modified by an overlayer of C6H6 (ads) upon its cycling in the 0.05-0.80 V range in aq H2SO4 + 1 mM C6H6. The C6H6 (ads) overlayer significantly changes the underpotential-deposited H (H(UPD)) and anion adsorption, and cyclic-voltammetry (CV) profiles show a sharp cathodic peak and an asymmetric anodic one in the 0.05-0.80 V potential range. The C6H6 (ads) layer blocks the (bi)sulfate adsorption but facilitates the adsorption of one monolayer of H(UPD). Cycling of the benzene-modified Pt(111) in benzene-free aq 0.05 H2SO4 from 0.05 to 0.80 V results in a partial desorption of C6H6 (ads) and in a partial recovery of the CV profile characteristic of an unmodified Pt(111). The peak potential of the cathodic and anodic feature is independent of the scan rate, s (10 < or = s < or = 100 mV s(-1)), and the peak current density increases linearly with an increase of the scan rate. Temperature variation modifies the peak potential and current density but does not affect the charge density of the cathodic or anodic feature. Temperature-dependent studies allow us to determine the thermodynamic state function for the H(UPD) adsorption and desorption. Delta G degrees(ads)(H(UPD))assumes values from -4 to -12 kJ mol(-1), while has values from 9 to 14 kJ mol(-1). The values of delta Delta G degrees (delta Delta G degrees = delat Delta G degrees(ads) + delta Delta D degrees(des)) decrease almost linearly from 6 kJ mol(-1) at theta(H(UPD) --> 0 to 0 kJ mol(-1) at theta(H(UPD) --> 1. The nonzero values of delta Delta G degrees testify that the adsorbing and desorbing H(UPD) adatoms interact with an energetically different substrate. The lateral interactions changed from repulsive (omega = 29 kJ mol(-1) at theta(H(UPD) --> 0) to attractive (omega = -28 kJ mol(-1) at theta(H(UPD) --> 1) as the H(UPD) coverage increases. The values of delta S degrees(ads)(H(UPD)) increase from 19 to 56 J K(-1) mol(-1), while those of delta S degrees(des)(H(UPD)) decrease from 45 to -30 J K(-1) mol(-1) with an increase of H(UPD) coverage. The values of delta H degrees(des)(H(UPD)) and delta H degrees(des)(H(UPD)) vary from 0 to 27 kJ mol(-1). The Pt(111)-H(UPD) surface bond energy at the benzene-modified Pt(111) electrode falls in the 191-218 kJ mol(-1) range and is weaker than in the case of the unmodified Pt(111) electrode in the same electrolyte.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号