首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
Ion-pair reverse-phase HPLC-inductively coupled plasma (ICP) MS was employed to determine arsenite [As(III)], dimethyl arsenic acid (DMA), monomethyl arsenic (MMA) and arsenate [As(V)] in Chinese brake fern (Pteris vittata L.). The separation was performed on a reverse-phase C18 column (Haisil 100) by using a mobile phase containing 10 mM hexadecyltrimethyl ammonium bromide (CTAB) as ion-pairing reagent, 20 mM ammonium phosphate buffer and 2% methanol at pH 6.0. The detection limits of arsenic species with HPLC-ICP-MS were 0.5, 0.4, 0.3 and 1.8 ppb of arsenic for As(III), DMA, MMA, and As(V), respectively. MMA has been shown for the first time to experimentally convert to DMA in the Chinese brake fern, indicating that Chinese brake fern can convert MMA to DMA by methylation.  相似文献   

2.
The potential of coupling anion-exchange high-performance liquid chromatography, hydride generation and atomic fluorescence spectrometry (HPLC–HG–AFS) for arsenic speciation is considered. The effects of hydrochloric acid and sodium tetrahydroborate concentrations on signal-to-background ratio, as well as argon and hydrogen flow rates, were investigated. Detection limits for arsenite, dimethylarsinic acid (DMA), monomethylarsonic acid (MMA) and arsenate were 0.17, 0.45, 0.30 and 0.38 μg l−1, respectively, using a 20-μl loop. Linearity ranges were 0.1–500 ng for As(III) and MMA (as arsenic), and 0.1–800 ng for DMA and As(V) (as arsenic). Arsenobetaine (AsB) was also determined by introducing an on-line photo-oxidation step after the chromatographic separation. In this case the limits of detection and linear ranges for the different species studied were similar to the values obtained previously for As(V). The technique was tested with a human urine reference material and a volunteer's sample. © 1998 John Wiley & Sons, Ltd.  相似文献   

3.
CZE for the speciation of arsenic in aqueous soil extracts   总被引:2,自引:0,他引:2  
We developed two separation methods using CZE with UV detection for the determination of the most common inorganic and methylated arsenic species and some phenylarsenic compounds. Based on the separation method for anions using hydrodynamic sample injection the detection limits were 0.52, 0.25, 0.27, 0.12, 0.37, 0.6, 0.6, 1.2 and 1.0 mg As/L for phenylarsine oxide (PAO), p-aminophenylarsonic acid (p-APAA), o-aminophenylarsonic (o-APAA), phenylarsonic acid (PAA), 4-hydroxy-3-nitrobenzenearsonic acid (roxarsone), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), arsenite or arsenious acid (As(III)) and arsenate (As(V)), respectively. These detection limits were improved by large-volume sample stacking with polarity switching to 32, 28, 14, 42, 22, 27, 26 and 27 microg As/L for p-APAA, o-APAA, PAA, roxarsone, MMA, DMA, As(III) and As(V), respectively. We have applied both methods to the analysis of the arsenic species distribution in aqueous soil extracts. The identification of the arsenic species was validated by means of both standard addition and comparison with standard UV spectra. The comparison of the arsenic species concentrations in the extracts determined by CZE with the total arsenic concentrations measured by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) indicated that CZE is suited for the speciation of arsenic in environmental samples with a high arsenic content. The extraction yield of phenylarsenic compounds from soil was derived from the arsenic concentrations of the aqueous soil extracts and the total arsenic content of the soil determined by ICP-AES after microwave digestion. We found that 6-32% of the total amount of arsenic in the soil was extractable by a one-step extraction with water in dependence on the type of arsenic species.  相似文献   

4.
The stability of arsenic species (arsenate [As(V)], monomethylarsonate [MMA], dimethylarsinate [DMA] and arsenite [As(III)]) in two types of urban wastewater samples (raw and treated) was evaluated. Water samples containing a mixture of the different arsenic species were stored in the absence of light at three different temperatures: +4 degrees C, +20 degrees C and +40 degrees C. At regular time intervals, arsenic species were determined by high performance liquid chromatography (HPLC)-hydride generation (HG)-atomic fluorescence spectrometry (AFS). The experimental conditions for the separation of arsenic species by HPLC and their determination by AFS were directly optimised from wastewater samples. As(III), As(V), MMA and DMA were separated on an anion exchange column using phosphate buffer (pH 6.0) as the mobile phase. Under these conditions the four arsenic species were separated in less than 10 min. The detection limits were 0.6, 0.9, 0.9 and 1.8 micro g L(-1) for As(III), DMA, MMA and As(V), respectively. As(V), MMA and DMA were found stable in the two types of urban wastewater samples over the 4-month period at the three different temperatures tested, while the concentration of As(III) in raw wastewater sample decreased after 2 weeks of storage. A greater stability of As(III) was found in the treated urban wastewater sample. As(III) remained unaltered in this matrix at pH 7.27 over the period studied, while at lower pH (1.6) losses of As(III) were detected after 1 month of storage. The results show that the decrease in As(III) concentration with time was accompanied by an increase in As(V) concentration.  相似文献   

5.
Neutron activation analysis (NAA) in combination with mainly high-performance liquid chromatography (HPLC) has been developed for the determination of low levels of five arsenic species, namely As(III), As(V), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), and arsenobetaine (AsB) in water samples. Organically bound arsenic (OBAs) and total arsenic have also been determined. In addition to anion-exchange HPLC, solid phase extraction and open-column cation-exchange chromatographic methods have also been used. The detection limits of the method have been found to be 0.005 ng·cm−3 for OBAs, 0.02 ng·cm−3 for AsB, DMA, MMA, As(III), and As(V) and 0.12 ng·cm−3 for total arsenic. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
《Analytical letters》2012,45(15):2601-2612
Arsenic speciation in paddy rice is of considerable interest due to its impact on the food safety and human health. In this study, a simple methodology was developed to simultaneously extract and analyze As species in rice from China. Arsenic species, including arsenite (As(III)), arsenate (As(V)), dimethylarsinic acid (DMA), and monomethylarsonic acid (MMA), were extracted by methanol-water (50:50, v/v) containing 0.02 mol L?1 nitric acid with a microwave-assisted procedure, and then determined by high performance liquid chromatography–hydride generation-atomic fluorescence spectrometry (HPLC–HG-AFS). The results showed that the method has good efficiency (>90%) for rice, indicating that there were no significant losses or transformations of arsenic during sample treatment and analysis. The limits of quantification (LOQ) of the method were 8.0, 20, 12, and 12 ng g?1 for As(III), As(V), DMA, and MMA, respectively. When this method was applied to the analysis of rice, As(III) had the highest concentration, followed by DMA, As(V), and MMA. The estimated weekly intake of inorganic As from rice by Chinese people accounted for 11.83% of the provisional tolerable weekly intake. The As speciation results in this study suggest that the risk associated with As in rice to human health may be negligible.  相似文献   

7.
A non-chromatographic, sensitive and simple analytical method has been developed for the determination of toxic arsenic species in vegetable samples by hydride generation-atomic fluorescence spectrometry (HG-AFS). As(III), As(V), dimethylarsinic acid (DMA) and monomethylarsonic acid (MMA) were determined by hydride generation-atomic fluorescence spectrometry using a series of proportional equations. The method is based on a single extraction of the arsenic species considered from vegetables through sonication at room temperature with H(3)PO(4) 1 mol L(-1) in the presence of 0.1% (w/v) Triton XT-114 and washing of the solid phase with 0.1% (w/v) EDTA, followed by direct measurement of the corresponding hydrides in four different experimental conditions. The limit of detection of the method was 3.1 ng g(-1) for As(III), 3.0 ng g(-1) for As(V), 1.5 ng g(-1) for DMA and 1.9 ng g(-1) for MMA, in all cases expressed in terms of sample dry weight. Recovery studies provided percentages greater than 91% for all considered species in spiked samples of chards and aubergines. Total toxic As found in the aforementioned samples was at the level of 90 ng g(-1); As(III) is followed by As(V), DMA and MMA which are the main species of As in chards being As(V) the main As compound in aubergines.  相似文献   

8.
In this work, dual‐column capillary microextraction (CME) system consisting of N‐(2‐aminoethyl)‐3‐aminopropyltrimethoxysilane (AAPTS)‐silica coated capillary (C1) and 3‐mercaptopropyl trimethoxysilane (MPTS)‐silica coated capillary (C2) was developed for sequential separation/preconcentration of arsenite [As(III)], arsenate [As(V)], monomethylarsonic acid [MMA(V)] and dimethylarsinic acid [DMA(V)] in the extracts of human hair followed by electrothermal vaporization inductively coupled plasma mass spectrometry (ETV‐ICP‐MS) detection with iridium as permanent modifier. Various experimental parameters affecting the dual‐column microextraction of different As species had been investigated in detail. It was found that at pH 9, As(V) and MMA could be quantitatively retained by C1 and only As(III) could be quantitatively retained by C2. With the aid of valve switching, As(V)/MMA(V) retained on C1 and As(III) retained on C2 could be sequentially desorbed by 10 µl of 0.01 mol l?1 HNO3 [for As(V)], 0.1 mol l?1 HNO3 [for MMA(V)] and 0.2 mol l?1 HNO3‐3% thiourea (m/v) [for As(III)], respectively, the eluents were immediately introduced into the Ir‐coated graphite tubes for further ETV‐ICP‐MS detection. With two‐step ETV pyrolysis program, Cl? in the sample matrix could be in situ removed, and the total As in the human hair extracts or digested solution could be interference‐free, determined by ETV‐ICP‐MS. DMA(V) in the human hair extracts was obtained by subtraction of total As in the human hair extracts from other three As species. Under the optimized conditions, the detection limits (3 σ) of the method were 3.9 pg ml?1 for As(III), 2.7 pg ml?1 for As(V), 2.6 pg ml?1 for MMA(V) and 124 pg ml?1 for total As with the relative standard deviations less than 7.0% (C = 0.1 ng ml?1, n = 7), and the enrichment factor was 286, 262 and 260 for As(III), As(V) and MMA(V), respectively. The developed method was successfully applied for the speciation of arsenic in the extracts of human hair. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
A fast, sensitive and simple non-chromatographic analytical method was developed for the speciation analysis of toxic arsenic species in cereal samples, namely rice and wheat semolina. An ultrasound-assisted extraction of the toxic arsenic species was performed with 1 mol L− 1 H3PO4 and 0.1% (m/v) Triton XT-114. After extraction, As(III), As(V), dimethylarsinic acid (DMA) and monomethylarsonic acid (MMA) concentrations were determined by hydride generation atomic fluorescence spectrometry using a series of proportional equations corresponding to four different experimental reduction conditions. The detection limits of the method were 1.3, 0.9, 1.5 and 0.6 ng g− 1 for As(III), As(V), DMA and MMA, respectively, expressed in terms of sample dry weight. Recoveries were always greater than 90%, and no species interconversion occurred. The speciation analysis of a rice flour reference material certified for total arsenic led to coherent results, which were also in agreement with other speciation studies made on the same certified reference material.  相似文献   

10.
Arsenic compounds including arsenous acid (As(III)), arsenic acid (As(V)), dimethylarsinic acid (DMA) and monomethylarsonic acid (MMA) were separated by high-performance liquid chromatography (HPLC) and detected by inductively coupled plasma mass spectrometry (ICP-MS). A Hamilton PRX-100 anionic-exchange column and a pH 8.5 K2HPO4/KH2PO4 5.0 × 10−3 mol L−1 mobile phase were used to achieve arsenic speciation. The separation of arsenic species provided peaks of As(III) at 2.75 min, DMA at 3.33 min, MMA at 5.17 min and As(V) at 12.5 min. The detection limits, defined as three times the standard deviation of the lowest standard measurements, were found to be 0.2, 0.2, 0.3 and 0.5 ng mL−1 for As(III), DMA, MMA and As(V), respectively. The relative standard deviation values for a solution containing 5.0 μg L−1 of As(III), DMA, MMA and As(V) were 1.2, 2.1, 2.5 and 3.0%, respectively. This analytical procedure was applied to the speciation of arsenic compounds in drinking (soft drink, beer, juice) samples. The validation of the procedure was achieved through the analysis of arsenic compounds in water and sediment certified reference materials.  相似文献   

11.
We have developed an on-line digestion device-based on the nano-TiO2-catalyzed photooxidation of arsenic species—for coupling between microbore anion-exchange chromatography (μ-LC) and hydride generation (HG)-inductively coupled plasma mass spectrometry (ICP-MS) systems that can be used for the determination of urinary arsenic species. To maximize the signal intensities of the desired arsenic species, we optimized the photocatalytic oxidation efficiency of the analyte species and developed a rapid on-line pre-reduction process for converting the oxidized species into As(III) prior to HG-ICP-MS determination. Under the optimized conditions for the nano-TiO2-catalyzed photooxidation-i.e., using 1 g of nano-TiO2 per-liter, at pH 5.2, and illuminating for 3 min- As(III), monomethylarsenoic acid (MMA), and dimethylarseinic acid (DMA) can be converted quantitatively into As(V). To attain maximal hydride generation efficiency, 0.5% Na2S2O4 solution, which can reduce As(V) to As(III) virtually instantaneously upon on-line mixing, was added as a pre-reductant prior to performing the HG step. In light of all the HG efficiency of tested arsenicals were improved and a segmented-flow technique was employed to avoid the loss of peak resolution when using our proposed on-line μ-LC-UV/nano-TiO2/HG-ICP-MS, the detection limits for As(III), MMA, DMA, and As(V) were all in the range of sub-microgram-per-liter (based on 3 sigma). A series of validation experiments-analysis of neat and spiked urine samples-indicated that our proposed methods can be applied satisfactorily to the determination of As(III), MMA, DMA, and As(V) in urine samples.  相似文献   

12.
P Zhang  G Xu  J Xiong  Y Zheng  O Yang  F Wei 《Electrophoresis》2001,22(16):3567-3572
Determination of arsenic species by large-volume field amplified stacking injection-capillary zone electrophoresis (LV-FASI-CZE) is reported in this paper. Whole column injection was employed. The optimum buffer pH for the separation of weak acids was discussed. It was found that the optimum buffer to analyze the stacked arsenate (As(V)), monomethylarsonate (MMA), and dimethylarsinate (DMA) was 25 mM phosphate at pH 6.5. However, the optimum buffer to analyze the concentrated arsenite (As(III)) was 20 mM phosphate - 10 mM borate at pH 9.28. The limits of detection of the method developed were 0.026 mg/L for As(III), 0.023 mg/L for As(V), 0.043 mg/L for MMA, and 0.018 mg/L for DMA. An enrichment factor of 34-100 for several arsenic species was obtained. In the end, this method was applied to determine the arsenic concentration in the environmental reference materials to show the usefulness of the method developed.  相似文献   

13.
We describe a method for continuously monitoring both hydride- and nonhydride-forming arsenic species in 10-microL microdialysate samples by coupling together on-line high-performance liquid chromatography (HPLC), a post-column UV/TiO2 film reactor, and hydride generation (HG) inductively coupled plasma mass spectrometry (ICP-MS). To maximize the signal intensities of the desired arsenic species, we optimized the photocatalytic oxidation efficiency of the analyte species and used a rapid on-line pre-reduction process to convert the oxidized species into As(III) prior to HG-ICP-MS determination. The UV/nano-TiO2 film reactor was manufactured by coating nano-TiO2 onto the interior of a glass tube. Impregnation and sol-gel methods were employed to deposit the TiO2 films, and their effectiveness for the oxidation of organic arsenicals was compared. To enhance the decomposition efficiency of organic arsenicals, we investigated the effects of the acidity and the composition of the column effluent. Because of the improved HG efficiency toward the tested arsenicals and the adoption of a segmented flow technique to retain the peak resolution in our on-line LC-UV/nano-TiO2 film reactor-HG-ICP-MS instrument, the detection limits for arseneous acid [As(III)], monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), arsenic acid [As(V)], and arsenobetaine (AsB) were all in the submicrogram-per-liter range (based on 3 sigma) for 10-microL injections. A series of validation experiments--analyses of certified reference urine and rabbit serum samples--indicated that these methods can be applied satisfactorily to the continuous determination of As(III), MMA, DMA, As(V), and AsB in blood and in the extracellular space of target organs.  相似文献   

14.
Optimization of HPLC-ICP-AES for the determination of arsenic species   总被引:2,自引:0,他引:2  
High performance liquid chromatography coupled to ICP-AES detection provides a rapid, reliable and sensitive method for arsenic speciation. The separation of As(III), As(V), DMA and MMA was achieved with ion exchange chromatography coupled to an axially-viewed sequential ICP-AES. After optimization of the chromatographic parameters (pH and concentration of the mobile phase), a careful study of the interface was conducted. Five nebulizers associated to three spray chambers were tested. Response of the ICP to each arsenic species was strongly affected by the selection of the nebulizer and spray chamber, however similar responses were obtained for each arsenic species. Best signal-to-noise ratios were obtained by using a microconcentric nebulizer and a cyclone spray chamber and did not affect the chromatographic resolution. Detection limits better than 10 microg L(-1) were obtained for As(III), DMA, MMA and 20 microg L(-1) for As(V), which is a significant improvement over previously published results.  相似文献   

15.
A combination of solid phase extraction, coprecipitation, and neutron activation techniques has been used to develop a speciation analysis method based on green chemistry for the major arsenic species in drinking water. Arsenate as As(V), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA) are separated and preconcentrated by strongly anion and cation exchange columns in tandem while As(III) remains in the effluent. These species are then selectively eluted and As(III) coprecipitated with bismuth sulphide. This simple method has been applied to the analysis of water reference materials with good results. The detection limits are 0.9, 1.7, 1.6, 3.8 and 16 ng mL−1 for As(III), As(V), MMA, DMA and total arsenic, respectively, using a neutron flux of 2.5 × 1011 cm−2 s−1 at the Dalhousie University SLOWPOKE-2 reactor (DUSR) facility and anti-coincidence gamma-ray spectrometry.  相似文献   

16.
The simultaneous separation and determination of arsenite As(III), arsenate As(V), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), arsenobetaine (AsB), and arsenocholine (AsC) in rice samples have been carried out in one single anion‐exchange column run by high‐performance liquid chromatography with inductively coupled plasma mass spectrometry. To estimate the effect of variables on arsenic (As) speciation, the chromatographic conditions including type of competing anion, ionic strength, pH of elution buffer, and flow rate of mobile phase have been investigated by a univariate approach. Under the optimum chromatographic conditions, baseline separation of six As species has been achieved within 10 min by gradient elution program using 4 mM NH4HCO3 at pH 8.6 as mobile phase A and 4 mM NH4HCO3, 40 mM NH4NO3 at pH 8.6 as mobile phase B. The method detection limits for As(III), As(V), MMA, DMA, AsB, and AsC were 0.4, 0.9, 0.2, 0.4, 0.5, and 0.3 μg/kg, respectively. The proposed method has been applied to separation and quantification of As species in real rice samples collected from Hunan Province, China. The main As species detected in all samples were As(III), As(V) and DMA, with inorganic As accounting for over 80% of total As in these samples.  相似文献   

17.
Four As compounds were successfully separated and detected by single-column ion chromatography with inductively coupled plasma (ICP) mass spectrometric detection. The mass spectral interferent ArCl+ was reduced by chromatographically resolving chloride from the negatively charged arsenic species. Determination of four As species was investigated in urine, club soda and wine. Detection limits of 0.16 ng of As(III), 0.26 ng of As(v), 0.073 ng of dimethylarsinic acid (DMA) and 0.18 ng of methylarsonic acid (MMA) in wine were obtained. Sensitivity was further improved by using an He-Ar mixed gas ICP as the ionization source. However, the intensity of the ArCl+ interference was also increased using this plasma. Detection limits of 0.063 ng of As(III), 0.037 ng of As(v), 0.032 ng of DMA and 0.080 ng of MMA in club soda were achieved using the He-Ar plasma source. Similar limits of detection were found in urine and wine.  相似文献   

18.
Shraim A  Chiswell B  Olszowy H 《Talanta》1999,50(5):1109-1127
The effects on the absorbance signals obtained using HG-AAS of variations in concentrations of the reaction medium (hydrochloric acid), the reducing agent [sodium tetrahydroborate(III); NaBH(4)], the pre-reducing agent (l-cysteine), and the contact time (between l-cysteine and arsenic-containing solutions) for the arsines generated from solutions of arsenite, arsenate, monomethylarsonic acid (MMA), and dimethylarsenic acid (DMA), have been investigated to find a method for analysis of the four arsenic species in environmental samples. Signals were found to be greatly enhanced in low acid concentration in both the absence (0.03-0.60 M HCl) and the presence of l-cysteine (0.001-0.03 M HCl), however with l-cysteine present, higher signals were obtained. Total arsenic content and speciation of DMA, As(III), MMA, and As(V) in mixtures containing the four arsenic species, as well as some environmental samples have been obtained using the following conditions: (i) total arsenic: 0.01 M acid, 2% NaBH(4), 5% l-cysteine, and contact time<10 min; (ii) DMA: 1.0 M acid, 0.3-0.6% NaBH(4), 4.0% l-cysteine, and contact time <5 min; (iii) As(III): 4-6 M acid and 0.05% NaBH(4) in the absence of l-cysteine; (iv) MMA: 4.0 M acid, 0.03% NaBH(4), 0.4% l-cysteine, and contact time of 30 min; (v) As(V): by difference. Detection limits (ppb) for analysis of total arsenic, DMA, As(III), and MMA were found to be 1.1 (n=7), 0.5 (n=5), 0.6 (n=7), and 1.8 (n=4), respectively. Good percentage recoveries (102-114%) of added spikes were obtained for all analyses.  相似文献   

19.
王振华  何滨  史建波  阴永光  江桂斌 《色谱》2009,27(5):711-716
建立了一种利用高效液相色谱-双通道原子荧光检测联用同时进行砷和硒形态分析的方法。以10 mmol/L NH4H2PO4溶液(pH 5.6)(添加2.5%(体积分数)的甲醇)为流动相,在12 min内同时分离了三价砷(As(III))、一甲基砷(MMA)、二甲基砷(DMA)、五价砷(As(V))、硒代胱氨酸(SeCys)、硒代蛋氨酸(SeMet)和四价硒[Se(IV)]等化合物。As(III)、DMA、MMA、As(V)、SeCys、SeMet和Se(IV)的检出限分别为1,3,2,3,4,18和3 μg/L (进样量为200 μL),5次测定的相对标准偏差为1.9%~6.1%(As 100 μg/L, Se 300 μg/L)。应用该方法对人体尿样及硒酵母片中砷和硒的形态进行了分析,目标物在尿样中的加标回收率为83%~108%,在硒酵母片中的加标回收率为88%~105%。实验结果表明,该方法可用于尿样及药品中砷和硒形态的日常分析。该方法减少了样品的分析时间和试剂用量,降低了工作强度,提高了工作效率。  相似文献   

20.
A high performance liquid chromatography-microwave digestion-hydride generation-atomic absorption spectrometry (HPLC-MW-HG-AAS) coupled method is described for As(III), As(V), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), arsenobetaine (AsB) and arsenocholine (AsC) determination. A Hamilton PRP-X100 anion-exchange column is used for carrying out the arsenic species separation. As mobile phase 17 mM phosphate buffer (pH 6.0) is used for As(III), As(V), MMA and DMA separation, and ultrapure water (pH 6.0) for AsB and AsC separation. Prior to injection into the HPLC system AsB and AsC are isolated from the other arsenic species using a Waters Accell Plus QMA cartridge. A microwave digestion with K(2)S(2)O(8) as oxidizing agent is used for enhancing the efficiency of conversion of AsB and AsC into arsenate. Detection limits achieved were between 0.3 and 1.1 ng for all species. The method was applied to arsenic speciation in fish samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号