首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
To solve the time-dependent wave equation in an infinite two (three) dimensional domain a circular (spherical) artificial boundary is introduced to restrict the computational domain. To determine the nonreflecting boundary we solve the exterior Dirichlet problem which involves the inverse Fourier transform. The truncation of the continued fraction representation of the ratio of Hankel function, that appear in the inverse Fourier transform, provides a stable and numerically accurate approximation. Consequently, there is a sequence of boundary conditions in both two and three dimensions that are new. Furthermore, only the first derivatives in space and time appear and the coefficients are updated in a simple way from the previous time step. The accuracy of the boundary conditions is illustrated using a point source and the finite difference solution to a Dirichlet problem.  相似文献   

2.
三维Poisson方程外问题的高阶局部人工边界条件   总被引:1,自引:0,他引:1  
1引言假设R3是一分片光滑的闭曲面.是以为边界的无界区域,=R3是以为边界的有界区域,并且存在球B0=xxR0我们考虑下面Poisson方程的外问题:这里f(x),g(x)是,上的已知函数,f(x)的支集是紧的,即存在一个球面=x·x=R1,使得x=xxR1,有fx=0.令=,则f(x)的支集包含在中,令=xx=,表示u在上的外法向微商.用流量为零的条件代替无限远处条件(3),则我们得到一个新的外问题:我们将分别讨论问题(1)-(3)和(4)-(7)的数值解.由于求解区域的无界性,给数值计算带来了本质性的困难.克服此…  相似文献   

3.
In this paper, spherical bodies of shell type are discussed, where the displacement vector is independent of the thickness coordinate. Their internal geometry is alterable towards the thickness (nonshallow spherical shells). A planar deformation model for spherical bodies of shell type is obtained. General representations of the system of equilibrium equations are expressed with the help of three holomorphic functions for the spherical shells. The components of the stresses and displacements and the boundary conditions for the components of the stresses and displacements are also expressed with the help of three holomorphic functions. Translated from Sovremennaya Matematika i Ee Prilozheniya (Contemporary Mathematics and Its Applications), Vol. 51, Differential Equations and Their Applications, 2008.  相似文献   

4.
1.IntroductionManyboundaxyvaJueproblemsofpartialdiffereotialequationsinvo1vingunboundeddomainoccurinmanyareasofapplications,e-g.lfluidflowaroundobstacles,couplingofstructureswithfoundationandsoon.Forgettingthenumericalsolutionsoftheproblemsonunboundeddomian,anaturalapproachistocutoffanunboundedpartofthedomainbyintroducinganartificialboundaryandsetupanaPpropriatear-tificialboundaryconditiononthearti%ialboundaryThentheoriginalproblemisapproximatedbyaproblemonbou.d.dfdomain.Inthelastteny6aJrs,b…  相似文献   

5.
In this note the exact non-local radiation condition and its local approximations at finite artificial boundary for the exterior boundary value problem of the reduced wave equation in 2 and 3 dimensions are discussed. Based on the asymptotic expansion of Hankel functions for large arguments, an approach for the construction of local approximations is suggested and gives expression of the normal derivative at spherical artificial boundary in terms of linear combination of Laplace-Beltrami operator and its iterates, i.e. tangential derivatives of even order exclusively. The resulting formalism is compatible with the usual variational principle and the finite element methodology and thus seems to be convenient in practical implementation.  相似文献   

6.
In this paper,the numerical solutions of heat equation on 3-D unbounded spatial do-main are considered. n artificial boundary Γ is introduced to finite the computationaldomain.On the artificial boundary Γ,the exact boundary condition and a series of approx-imating boundary conditions are derived,which are called artificial boundary conditions.By the exact or approximating boundary condition on the artificial boundary,the originalproblem is reduced to an initial-boundary value problem on the bounded computationaldomain,which is equivalent or approximating to the original problem.The finite differencemethod and finite element method are used to solve the reduced problems on the finitecomputational domain.The numerical results demonstrate that the method given in thispaper is effective and feasible.  相似文献   

7.
We consider the derivation of continuous and fully discrete artificial boundary conditions for the linearized Korteweg–de Vries equation. We show that we can obtain them for any constant velocities and any dispersion. The discrete artificial boundary conditions are provided for two different numerical schemes. In both continuous and discrete case, the boundary conditions are nonlocal with respect to time variable. We propose fast evaluations of discrete convolutions. We present various numerical tests which show the effectiveness of the artificial boundary conditions.© 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 1455–1484, 2016  相似文献   

8.
We develop a general procedure for solving the first and secondfundamental problems of the theory of elasticity for cases whereboundary conditions are prescribed on a spherical surface, usingLove's general solution of the elastostatic equilibrium equationsin terms of three scalar harmonic functions. It is shown thatthis general solution combined with a methodology by Brennerpaves an elegant way to determine the three harmonic functionsin terms of the boundary data. Thus, with this general scheme,solution of any such boundary-value problem is reducible toa routine exercise thereby providing some `economy of effort'.Furthermore, we develop a similar general scheme for thermoelasticproblems for cases when temperature type boundary conditionsare prescribed on a spherical surface. We then illustrate theapplication of the procedure by solving a number of problemsconcerning rigid spherical inclusions and spherical cavities.In particular, apart from furnishing alternative solutions tothe known problems, we demonstrate the use of this general procedurein solving the problem of interaction of a rigid spherical inclusionwith a concentrated moment and that of a concentrated heat sourcesituated at an arbitrary point outside the inclusion. We alsoderive closed-form expressions for the net force and the nettorque acting on a rigid spherical inclusion embedded into aninfinite elastic solid under an ambient displacement field characterizedby an arbitrary-order polynomial in the Cartesian coordinates.To the best of our knowledge, these results are new.  相似文献   

9.
The exact boundary condition on a spherical artificial boundary is derived for thethree-dimensional exterior problem of linear elasticity in this paper. After this bound-ary condition is imposed on the artificial boundary, a reduced problem only defined in abounded domain is obtained. A series of approximate problems with increasing accuracycan be derived if one truncates the series term in the variational formulation, which isequivalent to the reduced problem. An error estimate is presented to show how the errordepends on the finite element discretization and the accuracy of the approximate problem.In the end, a numerical example is given to demonstrate the performance of the proposedmethod.  相似文献   

10.
Summary. In this paper we design high-order local artificial boundary conditions and present error bounds for the finite element approximation of an incompressible elastic material in an unbounded domain. The finite element approximation is formulated in a bounded computational domain using a nonlocal approximate artificial boundary condition or a local one. In fact there are a family of nonlocal approximate artificial boundary conditions with increasing accuracy (and computational cost) and a family of local ones for a given artificial boundary. Our error bounds indicate how the errors of the finite element approximations depend on the mesh size, the terms used in the approximate artificial boundary condition and the location of the artificial boundary. Numerical examples of an incompressible elastic material outside a circle in the plane is presented. Numerical results demonstrate the performance of our error bounds. Received August 31, 1998 / Revised version received November 6, 2001 / Published online March 8, 2002  相似文献   

11.
The quasisteady axisymmetrical flow of an incompressible viscous fluid past an assemblage of slip eccentric spherical particle‐in‐cell models with Happel and Kuwabara boundary conditions is investigated. A linear slip, Basset type, boundary condition on the surface of the spherical particle is used. Under the Stokesian approximation, a general solution is constructed from the superposition of the basic solutions in the two spherical coordinate systems based on the particle and fictitious spherical envelope. The boundary conditions on the particle's surface and fictitious spherical envelope are satisfied by a collocation technique. Numerical results for the normalized drag force acting on the particle are obtained with good convergence for various values of the volume fraction, the relative distance between the centers of the particle and fictitious envelope and the slip coefficient of the particle. In the limits of the motions of the spherical particle in the concentric position with cell surface and near the cell surface with a small curvature, the numerical values of the normalized drag force are in good agreement with the available values in the literature. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
We consider the numerical approximations of the three-dimensional steady potential flow around a body moving in a liquid of finite constant depth at constant speed and distance below a free surface in a channel. One vertical side is introduced as the up-stream artificial boundary and two vertical sides are introduced as the downstream arti-ficial boundaries. On the artificial boundaries, a sequence of high-order global artificial boundary conditions are given. Then the original problem is reduced to a problem defined on a finite computational domain, which is equivalent to a variational problem. After solving the variational problem by the finite element method, we obtain the numerical approximation of the original problem. The numerical examples show that the artificial boundary conditions given in this paper are very effective.  相似文献   

13.
Summary. In this paper we consider the numerical simulations of the incompressible materials on an unbounded domain in . A series of artificial boundary conditions at a circular artificial boundary for solving incompressible materials on an unbounded domain is given. Then the original problem is reduced to a problem on a bounded domain, which be solved numerically by a mixed finite element method. The numerical example shows that our artificial boundary conditions are very effective. ReceivedJune 7, 1995 / Revised version received August 19, 1996  相似文献   

14.
15.
The simulation of wave phenomena in unbounded domains generally requires an artificial boundary to truncate the unbounded exterior and limit the computation to a finite region. At the artificial boundary a boundary condition is then needed, which allows the propagating waves to exit the computational domain without spurious reflection. In 1977, Engquist and Majda proposed the first hierarchy of absorbing boundary conditions, which allows a systematic reduction of spurious reflection without moving the artificial boundary farther away from the scatterer. Their pioneering work, which initiated an entire research area, is reviewed here from a modern perspective. Recent developments such as high-order local conditions and their extension to multiple scattering are also presented. Finally, the accuracy of high-order local conditions is demonstrated through numerical experiments.  相似文献   

16.
Summary. Simple boundary conditions on an artificial boundary are discussed, then an exact boundary condition on the artificial boundary is obtained. Approximation to this boundary condition with high accuracy is given, and the error estimates are obtained. A numerical example is presented, and the numerical results are compared with the exact solution. Received January 27, 1997 / Revised version received May 14, 1999 / Published online February 17, 2000  相似文献   

17.
We employ the technique of splitting for constructing artificial boundary conditions (ABCs) for the linear advection–diffusion–reaction equation when the computational domain is an nD open set with a piecewise smooth artificial boundary. The splitting is performed both by the physical processes and by coordinates. The former permits to construct ABCs for each of the processes separately, which provides local exact boundary conditions; the latter leads to ABCs much less exigent to the shape of artificial boundary in comparison with many others. We also prove that the corresponding boundary value problems are well-posed, and present results of the numerical experiments that confirm the theoretical study.  相似文献   

18.
We consider the numerical approximations of the complex amplitude in a coupled bayriver system in this work. One half-circumference is introduced as the artificial boundary in the open sea, and one segment is introduced as the artificial boundary in the river if the river is semi-infinite. On the artificial boundary a sequence of high-order artificial boundary conditions are proposed. Then the original problem is solved in a finite computational domain, which is equivalent to a variational problem. The numerical approximations for the original problem are obtained by solving the variational probiem with the finite element method. The numerical examples show that the artificial boundary conditions given in this work are very effective.  相似文献   

19.
We find necessary and sufficient conditions for the existence of a boundary control of vibrations of a string or a spherical layer for critical and subcritical times. We completely analyze the existence of a boundary control of vibrations of a spherical layer by a force on two spheres. We find necessary and sufficient existence conditions for the control. Along with the control problem for vibrations of a spherical layer, we consider a similar control problem for string vibrations.  相似文献   

20.
In this paper, we propose a simple and robust numerical method for the forced Korteweg–de Vries (fKdV) equation which models free surface waves of an incompressible and inviscid fluid flow over a bump. The fKdV equation is defined in an infinite domain. However, to solve the equation numerically we must truncate the infinite domain to a bounded domain by introducing an artificial boundary and imposing boundary conditions there. Due to unsuitable artificial boundary conditions, most wave propagation problems have numerical difficulties (e.g., the truncated computational domain must be large enough or the numerical simulation must be terminated before the wave approaches the artificial boundary for the quality of the numerical solution). To solve this boundary problem, we develop an absorbing non-reflecting boundary treatment which uses outward wave velocity. The basic idea of the proposing algorithm is that we first calculate an outward wave velocity from the solutions at the previous and present time steps and then we obtain a solution at the next time step on the artificial boundary by moving the solution at the present time step with the velocity. And then we update solutions at the next time step inside the domain using the calculated solution on the artificial boundary. Numerical experiments with various initial conditions for the KdV and fKdV equations are presented to illustrate the accuracy and efficiency of our method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号