首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Freund I 《Optics letters》2004,29(15):1715-1717
The canonical point singularity of elliptically polarized light is a C point, an isolated point of circular polarization surrounded by a field of polarization ellipses. The defining singular property of a C point is that the surrounding ellipses rotate about the point. It is shown that this rotation is seen only for a particular line of sight (LOS) and, conversely, that there exists a unique LOS for every ellipse along which the ellipse is seen as a singularity. It is also shown that changes in LOS can turn singularities into stationary points and vice versa. The democratic behavior of polarization singularities and stationary points is a consequence of the fundamental "what you see is what you get" property of ellipse fields. Simple experiments are proposed for observing this unusual property of elliptically polarized light.  相似文献   

3.
The critical points of generic paraxial ellipse fields consist of singular points of circular polarization, called C -points, and azimuthal stationary points, i.e., maxima, minima, and saddle points. We define these stationary points here and review their properties. The sign rule for ellipse fields requires that the sign of the singularity indices I(C)=+/-1/2 of the C -points on non-self-intersecting lines of constant azimuthal ellipse orientation (modulo pi/2), i.e., a -lines, alternate along the line. We verify this rule experimentally, using a newly developed interferometric technique to measure C -points and a -lines in an elliptically polarized random optical field.  相似文献   

4.
The absorption-induced acoustic-axis splitting in a viscoelastic crystal with an arbitrary anisotropy is considered. It is shown that after “switching on” absorption, the linear vector polarization field in the vicinity of the initial degeneracy point having an orientation singularity with the Poincaré index n = ±1/2, transforms to a planar distribution of ellipses with two singularities n = ±1/4 corresponding to new axes. The local geometry of the slowness surface of elastic waves is studied in the vicinity of new degeneracy points and a self-intersection line connecting them. The absorption-induced transformation of the classical picture of conical refraction is studied. The ellipticity of waves at the edge of the self-intersection wedge in a narrow interval of propagation directions drastically changes from circular at the wedge ends to linear in the middle of the wedge. For the wave normal directed to an arbitrary point of this wedge, during movement of the displacement vector over the corresponding polarization ellipse, the wave ray velocity s runs over the same cone describing refraction in a crystal without absorption. In this case, the end of the vector moves along a universal ellipse whose plane is orthogonal to the acoustic axis for zero absorption. The areal velocity of this movement differs from the angular velocity of the displacement vector on the polarization ellipse only by a constant factor, being delayed by π/2 in phase. When the wave normal is localized at the edge of the wedge in its central region, the movement of vector s along the universal ellipse becomes drastically nonuniform and the refraction transforms from conical to wedge-like.  相似文献   

5.
6.
Dennis MR 《Optics letters》2011,36(19):3765-3767
A new classification of circular polarization C points in three-dimensional polarization ellipse fields is proposed. The classification type depends on the out-of-plane variation of the polarization ellipse axis, in particular, whether the ellipse axes are in the plane of circular polarization one or three times. A minimal set of parameters for this classification is derived and discussed in the context of the familiar in-plane C point classification into lemon, star, and monstar types. This new geometric classification is related to the M?bius index of polarization singularities recently introduced by Freund.  相似文献   

7.
Freund I 《Optics letters》2004,29(8):875-877
Polarization singularities are shown to be unavoidable features of three-dimensional optical lattices. These singularities take the form of lines of circular polarization, C lines, and lines of linear polarization, L lines. The polarization figures surrounding a C line (L line) rotate about the line with winding number +/-1/2 (+/-1). C and L lines permeate the lattice, meander throughout the unit cell, and form closed loops. Surprisingly, every point in a linearly polarized optical lattice is found to be a singularity about which the surrounding polarization vectors rotate with an integer winding number.  相似文献   

8.
Egorov RI  Soskin MS  Freund I 《Optics letters》2006,31(13):2048-2050
The canonical point singularity of elliptically polarized light is an isolated point of circular polarization, a C point. As one recedes from such a point the surrounding polarization figures evolve into ellipses characterized by a major axis of length a, a minor axis of length b, and an azimuthal orientational angle alpha: at the C point itself, alpha is singular (undefined) and a and b are degenerate. The profound effects of the singularity in alpha on the orientation of the ellipses surrounding the C point have been extensively studied both theoretically and experimentally for over two decades. The equally profound effects of the degeneracy of a and b on the evolving shapes of the surrounding ellipses have only been described theoretically. As one recedes from a C point, a and b generate a surface that locally takes the form of a double cone (i.e., a diabolo). Contour lines of constant a and b are the classic conic sections, ellipses or hyperbolas depending on the shape of the diabolo and its orientation relative to the direction of propagation. We present measured contour maps, surfaces, cones, and diabolos of a and b for a random ellipse field (speckle pattern).  相似文献   

9.
A point of circular polarization embedded in a paraxial field of elliptical polarization is a polarization singularity called a C point. At such a point the major axis a and minor axis b of the ellipse become degenerate. Away from the C point this degeneracy is lifted such that surfaces a and b form nonanalytic cones that are joined at their apex (the C point) to produce a double cone called a diabolo. Typically, during propagation diabolo pairs are created or annihilated. We present rules based on geometry and topology that govern these events, provide initial experimental confirmation, and enumerate the allowed configurations in which diabolos can be created or annihilated.  相似文献   

10.
The paper is devoted to establishment of the real-time topological and morphological dynamics of generic developing paraxial elliptic speckle fields generated and driven by the system ‘laser beam + photorefractive crystal LiNbO3:Fe’. Generic space-time development of full gamut of polarization ellipse parameters (ellipticity, azimuth, morphology of C points, optical diabolos and handedness) and their combination in fixed beam cross-section was measured in details by the elaborated quick-action real-time Stokes-polarimetry. Whole field irreversible evolution is fulfilled through totality of random space/time C point pair nucleation/annihilation. The ‘life-story’ of C point and optical diabolo pairs is realized through ‘local topological/morphological transition’ with fully reversible scenario. It starts from smooth fragment of speckle field by formation of pre-nucleation local structure and finishes by after-annihilation local structure which decays to another smooth structure. Scenarios of star-monstar pair nucleation/annihilation and monstar  ↔  lemon transformation were established. Measured statistics of C point and diabolo morphological forms was in excellent agreement with theory predictions. All allowed scenarios of diabolo pair ‘life-story’ started/finished as star-hyperbolic monstar-hyperbolic pair were measured. Evolution of polarization ellipses handedness is implemented through L contours movement and reconnection with a saddle as the catalyst. Reconnection of L contour peninsula leads to birth of closed L contour delimiting island of fixed handedness ellipses with/without C points. Elaborated approach and presented results start the dynamic singular optics of time-dependent vector light fields.  相似文献   

11.
The propagation-dependent polarization vector fields are experimentally created from an isotropic microchip laser with a longitudinal-transverse coupling and entanglement of the polarization states. The experimental three-dimensional coherent vector fields are analytically reconstructed with a coherent superposition of orthogonal circularly polarized vortex modes. Each polarized component is found to comprise two Laguerre-Gaussian modes with different topological charges. With the analytical representation, the polarization singularities, on which the electric polarization ellipse is purely circular (C lines) or purely linear (L surfaces), are explored. The C line singularities are found to form an intriguing hyperboloidal structure.  相似文献   

12.
The 3D structure of randomly polarized light fields is exemplified by its polarization singularities: lines along which the polarization is purely circular (C lines) and surfaces on which the polarization is linear (L surfaces). We visualize these polarization singularities experimentally in vector laser speckle fields, and in numerical simulations of random wave superpositions. Our results confirm previous analytical predictions [M. R. Dennis, Opt. Commun. 213, 201 (2002)] regarding the statistical distribution of types of C points and relate their 2D properties to their 3D structure.  相似文献   

13.
《Physica A》1988,153(1):160-178
It is shown on an integrable example in the plane, that normal form solutions need not converge over the full basin of attraction of fixed points of dissipative dynamical systems. Their convergence breaks down at a singularity in the complex time plane of the exact solutions of the problem. However, as is demonstrated on a nonintegrable example with 3-dimensional phase space, the region of convergence of normal forms can be large enough to extend almost to a nearby hyperbolic fixed point, whose invariant manifolds “embrace” the attracting fixed point forming a complicated basin boundary. Thus, in such problems, normal forms are shown to be useful in practice, as a tool for finding large regions of initial conditions for which the solutions are necessarily attracted to the fixed point at t → ∞.  相似文献   

14.
The major and minor axes of the polarization ellipses that surround singular lines of circular polarization in three-dimensional optical ellipse fields are shown to be organized into Möbius strips (twisted ribbons). These strips can have either one or three half-twists, and can be either right- or left-handed. The normals to the surrounding ellipses generate cone-like structures. Two special projections, and eight new indices are developed to characterize the rather complex structures of the Möbius strips and cones. These eight indices, together with the two well-known indices used until now to characterize singular lines of circular polarization, could, if independent, generate 16,384 different index combinations. Geometric constraints and 15 selection rules are discussed that reduce the number of combinations to 1676. Of these 1150 have been observed in 106 independent realizations of a simulated random ellipse field. Statistical probabilities are presented for the most important index combinations. It is argued that it is presently feasible to perform experimental measurements of the Möbius strips and cones described here theoretically.  相似文献   

15.
The Yang-Lee zeros of the three-component ferromagnetic Potts model in one dimension in the complex plane of an applied field are determined. The phase diagram consists of a triple point where three phases coexist. Emerging from the triple point are three lines on which two phases coexist and which terminate at critical points (Yang-Lee edge singularity). The zeros do not all lie on the imaginary axis but along the three two-phase lines. The model can be generalized to give rise to a tricritical point which is a new type of Yang-Lee edge singularity. Gibbs phase rule is generalized to apply to coexisting phases in the complex plane.Supported in part by the National Science Foundation under Grant No. DMR-81-06151.  相似文献   

16.
Tao Xu 《Annals of Physics》2006,321(9):2017-2026
The vortex line of the Gross-Pitaevskii model is studied. The kinetic helicity of the vortex is discussed, and vortex structure is classified by the Hopf index, linking number in geometry. A mechanism of generation and annihilation of vortex lines is given by the method of phase singularity theory. The dynamic behavior of the vortex at the critical points is discussed in detail, and three kinds of length approximation relations at the neighborhood of a critical point are given: l ∝ (t − t)1/2, l ∝ t − t, l = const.  相似文献   

17.
S. Od?ak  D. B. Milo?evi? 《Laser Physics》2012,22(12):1780-1786
The nth harmonic emission rate has contributions of the components of the T-matrix element in the direction of the laser-field polarization and in the direction perpendicular to it. Using both components of the T-matrix element we present a theoretical approach for calculation of the ellipticity and the offset angle of high harmonics. The molecular bound state is represented by HOMO or by HOMO-1. We show that high harmonics, generated by molecules oriented by an angle ??L with respect to the major semiaxis of the laserfield polarization ellipse, are elliptically polarized even if the applied field is linearly polarized. Using examples of N2 and O2 molecules we show the existence of extrema and sudden changes of the harmonic ellipticity and the offset angle for particular molecular alignment. The interference between different contributions to the T-matrix element depends on the molecular symmetry. Presenting partial or total parameters of elliptic dichroism in the (??L, n) plane clear interference minima are observed. Therefore, the measurement of the elliptic dichroism may reveal information about the molecular structure and symmetry.  相似文献   

18.
The invariant manifolds (or “classical eigenstates”) in the phase space of bound integrable dynamical systems are known to be tori. Sections and projections of general, and special, two dimensional tori in four dimensional phase space are considered. Particular attention is paid to the families of projections accessed by linear canonical transformation since these can (in a certain sense) be considered to be different views of the same torus. The Wigner phase space representation of the corresponding semiclassical quantum eigenstate for a torus of any dimensionality is examined following the analysis of M. V. Berry (Phil. Trans. Roy. Soc.287 (1977), 237) for one dimensional tori. In this, the value of the semiclassical Wigner function at any phase space point depends on the behaviour of the chords of the torus centred on that point. It is found that for a two dimensional torus the number of such chords is always even. The three dimensional surfaces across which the number of chords changes constitute a (double) fold catastrophe on which the function oscillates with large amplitude. On the torus manifold itself this “Wigner caustic” generally exhibits a hyperbolic umbilic singularity (possibly interspersed with elliptic regions). At special lines and points on the torus, however, higher catastrophes up to E8 are generic.  相似文献   

19.
Speckle patterns produced by random optical fields with two (or more) widely different correlation lengths exhibit speckle spots that are themselves highly speckled. Using computer simulations and analytic theory we present results for the point singularities of speckled speckle fields, namely, optical vortices in scalar (one polarization component) fields and C points in vector (two polarization components) fields. In single correlation length fields both types of singularities tend to be more or less uniformly distributed. In contrast, the singularity structure of speckled speckle is anomalous; for some sets of source parameters vortices and C points tend to form widely separated giant clusters, for other parameter sets these singularities tend to form chains that surround large empty regions. The critical point statistics of speckled speckle is also anomalous. In scalar (vector) single correlation length fields phase (azimuthal) extrema are always outnumbered by vortices (C points). In contrast, in speckled speckle fields, phase extrema can outnumber vortices and azimuthal extrema can outnumber C points by factors that can easily exceed 10(4) for experimentally realistic source parameters.  相似文献   

20.
Line structured light vision sensor (LSLVS) calibration is to establish the relation between the camera and the light plane projector. This paper proposes a geometrical calibration method for LSLVS via three parallel straight lines on a 2D target. The approach is based on the properties of vanishing points and lines. During the calibration, one important aspect is to determine the normal vector of the light plane, another critical step is to obtain the distance parameter d of the light plane. In this paper, we put the emphasis on the later one. The distance constraint of parallel straight lines is used to compute a 3D feature point on the light plane, resulting in the acquisition of the parameter d. Thus, the equation of the light plane in the camera coordinate frame (CCF) can be solved out. To evaluate the performance of the algorithm, possible factors affecting the calibration accuracy are taken into account. Furthermore, mathematical formulations for error propagation are derived. Both computer simulations and real experiments have been carried out to validate our method, and the RMS error of the real calibration reaches 0.134 mm within the field of view 500 mm × 500 mm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号