首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 466 毫秒
1.
Gilberto M. Kremer 《Physica A》2010,389(19):4018-4025
The aim of this work is to analyze the entropy, entropy flux and entropy rate of granular materials within the frameworks of the Boltzmann equation and continuum thermodynamics. It is shown that the entropy inequality for a granular gas that follows from the Boltzmann equation differs from the one of a simple fluid due to the presence of a term which can be identified as the entropy density rate. From the knowledge of a non-equilibrium distribution function-valid for processes closed to equilibrium-it is obtained that the entropy density rate is proportional to the internal energy density rate divided by the temperature, while the entropy flux is equal to the heat flux vector divided by the temperature. A thermodynamic theory of a granular material is also developed whose objective is the determination of the basic fields of mass density, momentum density and internal energy density. The constitutive laws are restricted by the principle of material frame indifference and by the entropy principle. Through the exploitation of the entropy principle with Lagrange multipliers, it is shown that the results obtained from the kinetic theory for granular gases concerning the entropy density rate and entropy flux are valid in general for processes close to equilibrium of granular materials, where linearized constitutive equations hold.  相似文献   

2.
Leonardo Trujillo  Hans J. Herrmann   《Physica A》2003,330(3-4):519-542
We present a hydrodynamic theoretical model for “Brazil nut” size segregation in granular materials. We give analytical solutions for the rise velocity of a large intruder particle immersed in a medium of monodisperse fluidized small particles. We propose a new mechanism for this particle size-segregation due to buoyant forces caused by density variations which come from differences in the local “granular temperature”. The mobility of the particles is modified by the energy dissipation due to inelastic collisions and this leads to a different behavior from what one would expect for an elastic system. Using our model we can explain the size ratio dependence of the upward velocity.  相似文献   

3.
We present series of experiments on the resistance force encountered by a bottom piston pushing a vertical granular column confined in a two-dimensional cell. We show that, due to the presence of friction at the boundaries and between the grains, the signal shows many complex features. At slow driving velocities, we observe a transition to a stick-slip dynamic instability. Depending on the granular material used, the elementary stick-slip events may either be well characterized or largely distributed. We present a statistical study on the waiting time between events and the distribution of energy release as a function of the spring stiffness and the driving velocity. Received 5 August 1998 and Received in final form 22 October 1998  相似文献   

4.
We overview the physics of a granular mixture subject to horizontal oscillations, recently investigated via experiments and molecular dynamics simulations. First we discuss the rich phenomenology exhibited by this system, which encompasses both segregation and dynamical instabilities. Then we show that the phenomenology can be explained via an effective interaction approach, by which the driven, non-thermal, granular mixture in mapped into a monodispersed thermal system of particles interacting via an effective potential. After determining the effective interaction we discuss its microscopic origin and investigate how it induces the observed phenomenology. Finally, as much as in thermal fluids, from the effective interaction we derive a Cahn-Hilliard dynamics equation, which appears to capture the essential characteristics of the dynamics of the granular mixture.  相似文献   

5.
We find a general class of nontrivial stationary states in inelastic gases where, due to dissipation, energy is transferred from large velocity scales to small velocity scales. These steady states exist for arbitrary collision rules and arbitrary dimension. Their signature is a stationary velocity distribution f(v) with an algebraic high-energy tail, f(v) approximately v(-sigma). The exponent sigma is obtained analytically and it varies continuously with the spatial dimension, the homogeneity index characterizing the collision rate, and the restitution coefficient. We observe these stationary states in numerical simulations in which energy is injected into the system by infrequently boosting particles to high velocities. We propose that these states may be realized experimentally in driven granular systems.  相似文献   

6.
This paper presents numerical findings on rapid 2D and 3D granular flows on a bumpy base. In the supported regime studied here, a strongly sheared, dilute and agitated layer spontaneously appears at the base of the flow and supports a compact packing of grains moving as a whole. In this regime, the flow behaves like a sliding block on the bumpy base. In particular, for flows on a horizontal base, the average velocity decreases linearly in time and the average kinetic energy decreases linearly with the travelled distance, those features being characteristic of solid-like friction. This allows us to define and measure an effective friction coefficient, which is independent of the mass and velocity of the flow. This coefficient only loosely depends on the value of the micromechanical friction coefficient whereas the infuence of the bumpiness of the base is strong. We give evidence that this dilute and agitated layer does not result in significantly less friction. Finally, we show that a steady regime of supported flows can exist on inclines whose angle is carefully chosen.  相似文献   

7.
8.
We study experimentally the creeping penetration of guest (percolating) grains through densely packed granular media in two dimensions. The evolution of the system of the guest grains during the penetration is studied by image analysis. To quantify the changes in the internal structure of the packing, we use Voronoï tessellation and a certain shape factor which is a clear indicator of the presence of different underlying substructures (domains). We first consider the impact of the effective gravitational acceleration on upward penetration of grains. It is found that the higher effective gravity increases the resistance to upward penetration and enhances structural organization in the system of the percolating grains. We also focus our attention on the dependence of the structural rearrangements of percolating grains on some parameters like polydispersity and the initial packing fraction of the host granular system. It is found that the anisotropy of penetration is larger in the monodisperse case than in the bidisperse one, for the same value of the packing fraction of the host medium. Compaction of initial host granular packing also increases anisotropy of penetration of guest grains. When a binary mixture of large and small guest grains is penetrated into the host granular medium, we observe size segregation patterns.  相似文献   

9.
《Physica A》2006,360(1):143-150
The dynamic evolution of granular gases is fundamentally different from molecular gases due to the energy loss during collisions. Nevertheless techniques of kinetic theory are useful in a regime, when the granular particles are moving rapidly and the gas is sufficiently dilute. In these lecture notes we analyse in detail the collision of two rough particles which is inelastic due to incomplete normal and tangential restitution as well as Coulomb friction. Based on the Walton model a time evolution operator for the many particle system is introduced, a formalism which is well suited for simple approximations. We discuss free cooling of granular particles with particular emphasis on the exchange of energy between rotational and translational degrees of freedom.  相似文献   

10.
We present a model of non-uniform granular gases in one-dimensional case, whose granularity distribution has the fractal characteristic. We have studied the nonequilibrium properties of the system by means of Monte Carlo method. When the typical relaxation time T of the Brownian process is greater than the mean collision time To, the energy evolution of the system exponentially decays, with a tendency to achieve a stable asymptotic value, and the system finally reaches a nonequilibrium steady state in which the velocity distribution strongly deviates from the Gaussian one. Three other aspects have also been studied for the steady state: the visualized change of the particle density, the entropy of the system and the correlations in the velocity of particles. And the results of simulations indicate that the system has strong spatial clustering; Furthermore, the influence of the inelasticity and inhomogeneity on dynamic behaviors have also been extensively investigated, especially the dependence of the entropy and the correlations in the velocity of particles on the restitute coefficient e and the fractal dimension D.  相似文献   

11.
The dynamics of intermittent granular flow through an orifice at the bottom of a granular bin and the associated clogging due to formation of arches blocking the outlet, is studied numerically in two dimensions. When the hole size is less than the grain diameter, only a single grain is removed from the system so that the system self-organizes to a steady state and the distribution of the grain displacements decays as power laws. On the other hand, when hole sizes are within few times of the grain diameter, the outflow distributions are also observed to follow a power law. Received 21 July 1999 and Received in final form 17 September 1999  相似文献   

12.
Based on the contact charge transfer model between two particles due to a single collision proposed by Apodaca, the contact charges carried on a particle is derived due to multiple collisions, including the repeat collisions between two particles and the collisions with different particles, in mixed-size granular system of identical material. The effect of the particle size on the charges carried on the particle is simulated. The results indicate that for a mixed-size granular system, due to multiple collisions among particles, there exists a threshold particle radius, the particles with radius higher than which and the particles with radius lower than which carry opposite charges. The threshold particle radius is equal to mean value of particle size in the mixed-size granular system. Basically, the polarity of the charges carried on the largest particle is same as the polarity of the transfer charge carrier, and in case of the positive charge transferred, the largest particle will be positively charged and the smallest particle will be negatively charged, and vice versa. In the same size region, the more dispersive the particle size is, the more the net charges can be produced. In normal-distributed granular system, the magnitude of contact charge is determined mainly by the particle size distribution, size region, total particle number and the relative impact velocity.  相似文献   

13.
We present measurements showing the presence and the absence of molecular chaos in a two-layer vertically vibrated granular media where a plate drives a horizontal layer of massive grains, which, in turn, drives a second horizontal layer of lighter grains above the first. In the first layer driven by the plate, the velocities are spatially correlated. In the second layer, we find uncorrelated velocities consistent with the presence of molecular chaos. In this experiment, energy injection that is randomized in both space and time throughout the shaking cycle is necessary for observing molecular chaos and "kinetic theory"-like behavior. At higher densities, excluded volume effects force velocity correlations in the system which is no longer "gaslike" in behavior.  相似文献   

14.
The flow of dry granular material in a half-filled rotating drum is studied. The thickness of the flowing zone is measured for several rotation speeds, drum sizes and beads sizes (size ratio between drum and beads ranging from 47 to 7400). Varying the rotation speed, a scaling law linking mean velocity vs. thickness of the flow, v∼hm, is deduced for each couple (beads, drum). The obtained exponent m is not always equal to 1, the value previously reported for a drum in litterature, but varies with the geometry of the system. For small size ratios, exponents higher than 1 are obtained due to a saturation of the flowing zone thickness. The exponent of the power law decreases with the size ratio, leading to exponents lower than 1 for high size ratios. These exponents imply that the velocity gradient of a dry granular flow in a rotating drum is not constant. More fundamentally, these results show that the flow of a granular material in a rotating drum is very sensible to the geometry, and that the deduction of the “rheology” of a granular medium flowing in such a geometry is not obvious.  相似文献   

15.
Conservation equations are written for surface flows (either fluid or granular). The particularity of granular surface flows is then pointed out, namely that the depth of the flowing layer is not a priori fixed, leading to open equations. It is shown how some hypothesis on the flowing layer allows to close the system of equations. A possible hypothesis, similar to that made for a fluid layer, but inspired from granular flow experiments, is presented. The force acting on the flowing layer is discussed. Averaging over the flowing depth, as in shallow water theory, then allows to transform these conservation laws into equations for the evolution of the profile of a granular pile. Apart from their interest for building models, these conservation laws can be used to measure experimentally the effective forces acting on a flowing layer. Received 25 July 1998 and Received in final form 14 January 1999  相似文献   

16.
Dispersive flow of disks through a two-dimensional Galton board   总被引:1,自引:0,他引:1  
We report here an experimental and numerical study of the flow properties of disks driven by gravity through a hexagonal lattice of obstacles, i.e. a Galton board. During the fall, particles experience dissipative collisions that scatter them in random directions. A driven-diffusion regime can be achieved under certain conditions. A characteristic length of the motion and its dependence on geometrical parameters of the system is analyzed in the steady regime. The influence of collective effects on the dispersion process is investigated by comparison between single- and many-particle flows. The characterization of the dynamics and the diffusive properties of the flow in a system like a Galton board can be expanded to other granular systems, particularly static solid particle mixers and will give some insight in understanding granular mixing.  相似文献   

17.
《Comptes Rendus Physique》2015,16(3):291-302
We review a few representative examples of granular experiments or models where phase separation, accompanied by domain coarsening, is a relevant phenomenon. We first elucidate the intrinsic non-equilibrium, or athermal, nature of granular media. Thereafter, dilute systems, the so-called “granular gases”, are discussed: idealized kinetic models, such as the gas of inelastic hard spheres in the cooling regime, are the optimal playground to study the slow growth of correlated structures, e.g., shear patterns, vortices, and clusters. In fluidized experiments, liquid–gas or solid–gas separations have been observed. In the case of monolayers of particles, phase coexistence and coarsening appear in several different setups, with mechanical or electrostatic energy input. Phenomenological models describe, even quantitatively, several experimental measures, both for the coarsening dynamics and for the dynamic transition between different granular phases. The origin of the underlying bistability is in general related to negative compressibility from granular hydrodynamics computations, even if the understanding of the mechanism is far from complete. A relevant problem, with important industrial applications, is related to the demixing or segregation of mixtures, for instance in rotating tumblers or on horizontally vibrated plates. Finally, the problem of compaction of highly dense granular materials, which is relevant in many practical situations, is usually described in terms of coarsening dynamics: there, bubbles of misaligned grains evaporate, allowing the coalescence of optimally arranged islands and a progressive reduction of the total occupied volume.  相似文献   

18.
The understanding of the mechanisms leading to the formation of inhomogeneities in freely evolving granular gases is important to establish, for instance, the time scale for pattern formation. In this work, the shear state of an isolated granular gas will be analyzed. This is a two-band shear state with a steady density profile and an average temperature that decays in time with a Haff like law, but controlled by the viscosity of the gas. Hydrodynamics predicts that this state can only exist if the size of the system is larger than the critical size for the stability of the homogeneous cooling state, and expressions for the hydrodynamic fields in the limit of not too large inhomogeneities can be obtained. The theoretical predictions are compared with computer simulation results of a system of inelastic hard disks for several values of the coefficient of restitution, well beyond the quasi-elastic limit. It will be shown that the shear state is indeed exhibited by the system if its size is larger, but not much larger, than the critical size. The behaviour of the system and the way in which it deviates from the shear state as its size is increased will also be discussed.  相似文献   

19.
We study how the aggregate statistical properties for density fluctuations in granular aggregates scale with the sample size and how such a scaling is associated with the correlations between grains. Correlations are studied both between grain positions and between Vorono? cell volumes, showing distinct behaviors and properties. A non-linear scaling in the aggregate volume fluctuations as function of the sample size is discovered and the connection between such anomalous scaling and correlations is explained. It emerges that volume fluctuations might be described by means of a single universal equation for all samples at all cluster sizes.  相似文献   

20.
The connection between granular gases and sticky gases has recently been considered, leading to the conjecture that inelastic collapse is avoided for space dimensions higher than 4. We report Molecular Dynamics simulations of hard inelastic spheres in dimensions 4, 5 and 6. The evolution of the granular medium is monitored throughout the cooling process. The behaviour is found to be very similar to that of a two-dimensional system, with a shearing-like instability of the velocity field and inelastic collapse when collisions are inelastic enough, showing that the connection with sticky gases needs to be revised. Received 17 April 2000 and Received in final form 7 June 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号