共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper a moving mode-III crack in functionally graded piezoelectric materials (FGPM) is studied. The crack surfaces are assumed to be permeable. The governing equations for FGPM are solved by means of Fourier cosine transform. The mathematical formulation for the permeable crack condition is derived as a set of dual integral equations, which, in turn, are reduced to a Fredholm integral equation of the second kind. The results obtained indicate that the stress intensity factor of moving crack in FGPM depends only on the mechanical loading. The gradient parameter of the FGPM and the moving velocity of the crack do have significant influence on the dynamic stress intensity factor. 相似文献
2.
The dynamic response of a functionally graded orthotropic strip with an edge crack perpendicular to the boundaries is studied. The material properties are assumed to vary continuously along the thickness direction. Laplace and Fourier transforms are applied to reduce the problem to a singular integral equation. Numerical results are presented to illustrate the influences of parameters such as the nonhomogeneity constant and geometry parameters on the dynamic stress intensity factors (SIFs). 相似文献
3.
Summary A finite crack propagating at constant speed in a functionally graded piezoelectric strip (FGPS) bonded to a homogeneous piezoelectric strip is considered. It is assumed that the electroelastic material properties of the FGPS vary exponentially across the thickness of the strip, and that the bimaterial strip is under combined anti-plane mechanical shear and in-plane electrical loads. The analysis is conducted for the electrically unified crack boundary condition, which includes both the traditional permeable and the impermeable ones. By using the Fourier transform, the problem is reduced to the solution of Fredholm integral equations of the second kind. Numerical results for the stress intensity factor and the crack sliding displacement are presented to show the influences of the crack propagation speed, electric loads, FGPS gradation, crack length, electromechanical coupling coefficient, properties of the bonded homogeneous piezoelectric strip and crack location. 相似文献
4.
X.-F. Li 《Archive of Applied Mechanics (Ingenieur Archiv)》2003,72(10):745-758
Summary The dynamic problem of an impermeable crack of constant length 2a propagating along a piezoelectric ceramic strip is considered under the action of uniform anti-plane shear stress and uniform
electric field. The integral transform technique is employed to reduce the mixed-boundary-value problem to a singular integral
equation. For the case of a crack moving in the mid-plane, explicit analytic expressions for the electroelastic field and
the field intensity factors are obtained, while for an eccentric crack moving along a piezoelectric strip, numerical results
are determined via the Lobatto–Chebyshev collocation method for solving a resulting singular integral equation. The results
reveal that the electric-displacement intensity factor is independent of the crack velocity, while other field intensity factors
depend on the crack velocity when referred to the moving coordinate system. If the crack velocity vanishes, the present results
reduce to those for a stationary crack in a piezoelectric strip. In contrast to the results for a stationary crack, applied
stress gives rise to a singular electric field and applied electric field results in a singular stress for a moving crack
in a piezoelectric strip.
Received 14 August 2001; accepted for publication 24 September 2002
The author is indebted to the AAM Reviewers for their helpful suggestions for improving this paper. The work was supported
by the National Natural Science Foundation of China under Grant 70272043. 相似文献
5.
Dynamic response of a crack in a functionally graded interface of two dissimilar piezoelectric half-planes 总被引:3,自引:0,他引:3
Summary In this paper, the dynamic anti-plane crack problem of two dissimilar homogeneous piezoelectric materials bonded through
a functionally graded interfacial region is considered. Integral transforms are employed to reduce the problem to Cauchy singular
integral equations. Numerical results illustrate the effect of the loading combination parameter λ, material property distribution
and crack configuration on the dynamic stress and electric displacement intensity factors. It is found that the presence of
the dynamic electric field could impede of enhance the crack propagation depending on the time elapsed and the direction of
applied electric impact.
Received 4 December 2001; accepted for publication 9 July 2002
This work is supported by the National Natural Science Foundation of China through Grant No. 10132010. 相似文献
6.
The dynamic behaviors of several moving cracks in a functionally graded piezoelectric (FGP) strip subjected to anti-plane mechanical loading and in-plane electrical loading are investigated. For the first time, the distributed dislocation technique is used to construct the integral equations for FGP materials, in which the unknown variables are the dislocation densities. With the dislocation densities, the field intensity factors are determined. Moreover, the effects of the speed of the crack propagation on the field intensity factors are studied. Several examples are solved, and the numerical results for the stress intensity factor and the electric displacement intensity factor are presented graphically finally. 相似文献
7.
B. L. Wang 《Mechanics Research Communications》2003,30(2):151
This paper considers the mode III crack problem in functionally graded piezoelectric materials. The mechanical and the electrical properties of the medium are considered for a class of functional forms for which the equilibrium equations have an analytical solution. The problem is solved by means of singular integral equation technique. Both a single crack and a series of collinear cracks are investigated. The results are plotted to show the effect of the material inhomogeneity on the stress and the electric displacement intensity factors. 相似文献
8.
An internal crack located within a functionally graded material (FGM) strip bonded with two dissimilar half-planes and under an anti-plane load is considered. The crack is oriented in an arbitrary direction. The material properties of strip are assumed to vary exponentially in the thickness direction and two half-planes are assumed to be isotropic. Governing differential equations are derived and to reduce the difficulty of the problem dealing with solution of a system of singular integral equations Fourier integral transform is employed. Semi closed form solution for the stress distribution in the medium is obtained and mode III stress intensity factor (SIF), at the crack tip is calculated and its validity was verified. Finally, the effects of nonhomogeneous material parameter and crack orientation on the stress intensity factor are studied. 相似文献
9.
Consider two bonded functionally graded piezoelectric material (FGPM) with finite height. Each material contains an arbitrary oriented crack. The material properties are assumed in exponential forms in the direction normal to the interface. The crack surface condition is assumed to be electrically impermeable or permeable. Using the Fourier transform technique, the problem can be reduced to a system of singular integral equations, which are then solved numerically by applying the Gauss-Chebyshev integration formula to obtain the stress intensity factors at the crack tips. Numerical calculations are carried out to obtain the energy density factor S and the energy release rate G. In impermeable case, the energy release rate has been shown to be negative as the electric loads are applied. The positive definite characteristic of the energy density factor makes it possible for predicting the fracture behavior of the cracked structure. The influences of the non-homogeneous parameters and crack orientation on the energy density factors at the crack tips are discussed in detail. The results show that the energy density factor at the crack tip will be increased when the crack tip is located within the softer material. 相似文献
10.
The problem of a penny-shaped interface crack between a functionally graded piezoelectric layer and a homogeneous piezoelectric
layer is investigated. The surfaces of the composite structure are subjected to both mechanical and electrical loads. The
crack surfaces are assumed to be electrically impermeable. Integral transform method is employed to reduce the problem to
a Fredholm integral equation of the second kind. The stress intensity factor, electric displacement intensity factor and energy
release rate are derived, some typical numerical results are plotted graphically. The effects of electrical loads, material
nonhomogeneity and crack configuration on the fracture behaviors of the cracked composite structure are analyzed in detail. 相似文献
11.
Asymptotic expansion for the out of plane displacement field around a crack propagating along the gradient in a functionally graded material is developed. The irregular behavior of one of the terms in the expansion at low crack speeds is further examined and a remedial solution, which is well behaved at low crack speeds, is proposed. The developed out of plane displacement field is used to estimate stress intensity factor from quasi-static finite element solution. The results indicate that inclusion of the proposed nonhomogeneity specific terms gives estimates of stress intensity factor, which are consistent with existing analytical predictions. 相似文献
12.
The scattering problem of anti-plane shear waves in a functionally graded material strip with an off-center crack is investigated by use of Schmidt method. The crack is vertically to the edge of the strip. By using the Fourier transform, the problem can be solved with the help of a pair of dual integral equations that the unknown variable is the jump of the displacement across the crack surfaces. To solve the dual integral equations, the jump of the displacement across the crack surfaces was expanded in a series of Jacobi polynomials. Numerical examples were provided to show the effects of the parameter describing the functionally graded materials, the position of the crack and the frequency of the incident waves upon the stress intensity factors of the crack. 相似文献
13.
The dynamic fracture problem for a functionally graded piezoelectric plate containing a crack perpendicular to the free boundaries is considered in this study. It is assumed that the electroelastic properties of the medium vary continuously in the thickness direction. Integral transform techniques and dislocation density function are employed to reduce the problem to the solution of a singular integral equation. Mode I dynamic energy density factors are presented for an internal crack as well as an edge crack for various values of dimensionless parameters representing the size and location of the crack and the material nonhomogeneity. 相似文献
14.
弹性功能梯度材料板条中周期裂纹的反平面问题 总被引:1,自引:0,他引:1
讨论了弹性功能梯度材料板条中裂纹的反平面问题. 用Fourier变换方法得到了一个基本解. 这个基本解表示了实轴上一点作用有点位错时引起的影响. 利用此基本解可得单裂纹和周期裂纹问题的奇异积分方程. 在周期裂纹求解时,远处裂纹对于中央裂纹的影响作了有效的近似处理. 最后, 给出了数值结果,它表示了材料性质对于裂纹端应力强度因子的影响. 相似文献
15.
M.H. Kargarnovin C. NasiraiM.R. Torshizian 《Theoretical and Applied Fracture Mechanics》2011,56(1):42-48
The fracture problem of a crack in a functionally graded strip with its properties varying in a linear form along the strip thickness under an anti-plane load is considered. The embedded anti-plane crack is located in the middle of strip half way through the thickness. The third mode stress intensity factor is derived using two different methods. In the first method, by employing Fourier integral transforms, the governing equation is converted to a singular integral equation, which is subsequently solved numerically by the collocation method based on Chebyshev polynomials. Then, the problem is solved by means of finite element method in which quadrilateral 8-node singular elements around each crack tip are used. After inspecting the validity of the solution technique, effects of crack geometry and non-homogeneous material parameter on the stress intensity, energy release and energy density are studied and the results of analytical and FEM solutions are compared. 相似文献
16.
The transient fracture behavior of a functionally graded layered structure subjected to an in-plane impact load is investigated. The studied structure is composed of two homogeneous layers and a functionally graded interlayer with a crack perpendicular to the boundaries. The impact load is applied on the face of the crack. Fourier transform and Laplace transform methods are used to formulate the present problem in terms of a singular integral equation in Laplace transform domain. Considering variations of parameters such as the nonhomogeneity constant, the thickness ratio and the crack length, the dynamic stress intensity factors (DSIFs) in time domain are studied and some meaningful conclusions are obtained.The project supported by the National Science Foundation for Excellent Young Investigators (10325208), the National Natural Science Foundation of China (10432030) and the China Postdoctoral Science Foundation (2004036018)The English text was polished by Ron Marshall. 相似文献
17.
The mechanical model was established for the anti-plane fracture problem of a functionally graded coating–substrate system
with a coating crack inclined to the weak/micro-discontinuous interface. The Cauchy singular integral equation for the crack
was derived using Fourier integral transform, and the Lobatto–Chebyshev collocation method put up by Erdogan and Gupta was
used to get its numerical solution. Finally, the effects of the weak/micro-discontinuity of the interface on SIFs were analyzed,
the “affected regions” corresponding to the two crack tips have been obtained and their engineering significance was discussed.
It was indicated that, for the crack tip in the corresponding “affected region”, to reduce the weak-discontinuity of the interface
and to make the interface micro-discontinuous are the two effective ways to reduce the SIF, and the latter way always has
more remarkable SIF-reduction effect. For the crack tip outside the “affected region”, its SIF is mainly influenced by material
stiffness, and to prevent such a tip from growing toward the interface “softer coating and stiffer substrate” is a more advantageous
combination than “stiffer coating and softer substrate”. 相似文献
18.
The fracture behavior of a cracked strip under antiplane mechanical and inplane electrical loading is studied. A functionally graded piezoelectric strip with exponential material gradation is under consideration. The mechanical and electrical loading is combined via loading coupling factor. The problem of a graded piezoelectric strip containing a screw dislocation is solved. This solution results in stress and electric displacement components with Cauchy singularity. Based on the solution achieved for the dislocation, the distributed dislocation technique (DDT) is utilized to form any geometry of multiple cracks and analyze the behavior of a cracked strip under antiplane mechanical and inplane electrical loading. This technique is capable of the analysis of a strip with a system of interacting cracks. Several examples including strips with single crack, two straight cracks and two curved cracks are presented. 相似文献
19.
The behavior of a crack in functionally graded piezoelectric/piezomagnetic materials under anti-plane shear loading 总被引:6,自引:0,他引:6
Summary In this paper, the behavior of a crack in functionally graded piezoelectric/piezomagnetic materials subjected to an anti-plane shear loading is investigated. To make the analysis tractable, it is assumed that the material properties vary exponentially with the coordinate parallel to the crack. By using a Fourier transform, the problem can be solved with the help of a pair of dual integral equations in which the unknown variable is the jump of the displacements across the crack surfaces. These equations are solved using the Schmidt method. The relations among the electric displacement, the magnetic flux and the stress field near the crack tips are obtained. Numerical examples are provided to show the effect of the functionally graded parameter on the stress intensity factors of the crack.The authors are grateful for financial support from the Natural Science Foundation of Hei Long Jiang Province (A0301), the National Natural Science Foundation of China (50232030, 10172030), the Natural Science Foundation with Excellent Young Investigators of Hei Long Jiang Province(JC04-08) and the National Science Foundation with Excellent Young Investigators (10325208). 相似文献
20.
The thermal fracture of a bimaterial consisting of a homogeneous material and a functionally graded material (FGM) with a system of internal cracks and an interface crack is investigated. The bimaterial is subjected to a heat flux. The thermal properties of FGM are assumed to be continues functions of the thickness coordinate, while the elastic properties are constants. The method of the solution is based on the singular integral equations. For a special case where the interface crack is much larger than the internal cracks in the FGM the asymptotic analytical solution of the problem is obtained as series in a small parameter (the ratio between sizes of the internal and interface crack) and the thermal stress intensity factors (TSIFs) are derived as functions of geometry of the problem and material characteristics. A parametric analysis of the effects of the location and orientation of the cracks and of the inhomogeneity parameter of FGM’s thermal conductivity on the TSIFs is performed. The results are applicable to such kinds FGMs as ceramic/ceramic FGMs, e.g., TiC/SiC, MoSi2/Al2O3 and MoSi2/SiC, and also some ceramic/metal FGMs. 相似文献