首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A wide variety of chiral selectors have been employed in CZE, and among them macrocyclic antibiotics including glycopeptides, ansamycins, aminoglycosides and polypeptides exhibited prominent enantioselective properties toward abundant racemic compounds. Compared with CZE, the use of macrocyclic antibiotics as chiral selectors in NACE has not been reported previously. In this study, an approach to the enantioseparation of basic drugs by means of NACE with erythromycin lactobionate (EL) belonging to the group of macrolide antibiotics has been investigated. Especially different from the above four classes of antibiotics, there are no reports concerned with the use of macrolides which belong to macrocyclic antibiotics as chiral selectors in CE. In this work EL is first used as a chiral selector in NACE for the enantiomeric separations of two racemic basic drugs that possess high separability consisting of propranolol and duloxetine. Furthermore, EL possesses advantages such as high solubility and low viscosity in the solvent and very weak UV absorption. The chiral separations were achieved using Tris‐boric acid as the BGE and methanol as the organic medium. In the course of this work we observed that both migration time and enantioseparation were influenced by several parameters such as the pH and composition of the BGE, EL concentration, capillary temperature and applied voltage. Consequently, these parameters were systematically optimized in order to obtain the optimum enantioseparations.  相似文献   

2.
Lin CE  Lin SL  Cheng HT  Fang IJ  Kuo CM  Liu YC 《Electrophoresis》2005,26(21):4187-4196
Migration behavior and enantioseparation of racemic hydrobenzoin and structurally related compounds, including benzoin and benzoin methyl ether, in CZE with a dual CD system consisting of heptakis-(2,3-dihydroxy-6-O-sulfo)-beta-CD (SI-S-beta-CD) and beta-CD as chiral selectors in the presence and absence of borate complexation at pH 9.0 were investigated. The results indicate that enantioseparation of hydrobenzoin is mainly governed by CD complexation of hydrobenzoin-borate complexes with SI-S-beta-CD when SI-S-beta-CD concentration is relatively high. Whereas CD complexation of hydrobenzoin-borate complexes with beta-CD plays a significant role in enantioseparation when SI-S-beta-CD concentration is comparatively low. The (S,S)-enantiomer of the hydrobenzoin-borate complex was found to interact more strongly than the corresponding (R,R)-enantiomer with both SI-S-beta-CD and beta-CD. These two types of CD show the same chiral recognition pattern, but they exhibit opposite effects on the mobility of the enantiomers of hydrobenzoin-borate complexes. Enantiomer migration reversal of hydrobenzoin occurred in the presence of borate complexation when varying the concentration of beta-CD, while keeping SI-S-beta-CD at a relatively low concentration. Binding constants of the enantiomers of benzoin-related compounds to beta-CD and those of hydrobenzoin-borate complexes to SI-beta-CD were evaluated; the mobility contributions of all complex species to the effective mobility of the enantiomers of hydrobenzoin as a function of beta-CD concentration in a borate buffer were analyzed. In addition, comparative studies on the enantioseparation of benzoin-related compounds with SI-S-beta-CD and with randomly sulfate-substituted beta-CD were made.  相似文献   

3.
This study used capillary electrophoresis with fluorescence detection- and a partial-filling mode-based method for chiral separation of ofloxacin. The deoxyribonucleic acid oligonucleotides with different base sequences were studied as potential chiral selectors including deoxyribonucleic acid tetrahedron, G-quadruplex, and G-riched double-strand deoxyribonucleic acid. Under the optimized conditions, all the deoxyribonucleic acid chiral selectors exhibited excellent chiral separation capabilities with a resolution higher than 1.5. The electrophoretic behavior of the ofloxacin enantiomer might result from the intermediate conjugate with different stabilities between chiral selectors and analytes by a combination of the hydrogen bond and spatial recognition structure. Moreover, satisfactory repeatability regarding run-to-run and interday repeatability was obtained, and all the relative standard deviation values of migration times and resolutions were below 4% (n = 6). Conclusively, both spatial structure and arrangement of the G bases potentiated the chiral separation capability of deoxyribonucleic acid for ofloxacin enantiomer. This work offered a stepping stone for enantioseparation using deoxyribonucleic acid as chiral selectors.  相似文献   

4.
To date, a series of chiral selectors have been utilized successfully in capillary electrophoresis (CE). Among these various chiral selectors, macrocyclic antibiotics have been demonstrated to represent powerful enantioselectivity towards many chiral compounds. Differing from macrocyclic antibiotics, the use of lincosamide antibiotics as chiral selectors has not been reported previously. In our recent work, clindamycin phosphate belonging to the group of lincosamides has been first used as a chiral selector in capillary zone electrophoresis (CZE). In this paper, a micellar electrokinetic chromatography (MEKC) method has been developed for the evaluation of enantioseparation capability of this novel chiral selector towards several racemic basic drugs. As observed during the course of this work, clindamycin phosphate allowed excellent separation of the enantiomers of nefopam, citalopram, tryptophan, chlorphenamine, propranolol and metoprolol, as well as partial enantioresolution of tryptophan methyl ester and cetirizine. In this MEKC chiral separation system, different types of anionic surfactants, organic additives and background electrolytes were tested, and satisfactory enantioseparations of basic drugs above-mentioned were achieved using sodium dodecyl sulfate (SDS) as the surfactant, isopropanol as the organic additive, and phosphate as the background electrolyte. Furthermore, both migration times and enantioseparation of the analytes were influenced by several experimental parameters such as pH of the BGE, clindamycin phosphate and SDS concentrations, phosphate and isopropanol concentrations, and applied voltage. Consequently, the effects of these factors on enantioseparations of the studied basic drugs were systematically investigated in order to evaluate the stereoselectivity of clindamycin phosphate in MEKC.  相似文献   

5.
Cyclodextrins and their derivatives are one of the most common and successful chiral selectors. However, there have been few publications about the use of cyclodextrin‐modified monoliths. In this study, organic hybrid monoliths were prepared by the immobilization of derivatized β‐cyclodextrin alone or with l‐ 2‐allylglycine hydrochloride to the polyhedral oligomeric silsesquioxane methacryl substituted monolith. The main topic of this study is a combined system with dual chiral selectors (l‐ 2‐allylglycine hydrochloride and β‐cyclodextrin) as monolithic chiral stationary phase. The effect of l‐ 2‐allylglycine hydrochloride concentration on enantioseparation was investigated. The enantioseparation of the four acidic compounds with resolutions up to 2.87 was achieved within 2.5 min on the prepared chiral monolithic column in capillary liquid chromatography. Moreover, the possible mechanism of enantioseparation was discussed.  相似文献   

6.
Introducing a new class of chiral selectors is an interesting work and this issue is still one of the hot topics in separation science and chirality. In this study, for the first time, sulfated maltodextrin (MD) was synthesized as a new anionic chiral selector and then it was successfully applied for the enantioseparation of five basic drugs (amlodipine, hydroxyzine, fluoxetine, tolterodine, and tramadol) as model chiral compounds using CE. This chiral selector has two recognition sites: a helical structure and a sulfated group which contribute to three corresponding driving forces; inclusion complexation, electrostatic interaction, and hydrogen binding. Under the optimized condition (buffer solution: 50 mM phosphate (pH 3.0) and 2% w/v sulfated MD; applied voltage: 18 kV; temperature: 20°C), baseline enantioseparation was observed for all mentioned chiral drugs. When instead of sulfated MD neutral MD was used under the same condition, no enantioseparation was observed which means the resolution power of sulfated MD is higher than neutral MD due to the electrostatic interaction between sulfated groups and protonated chiral drugs. Also, the countercurrent mobility of negatively charged MD (sulfated MD) allows more interactions between the chiral selector and chiral drugs and this in turn results in a successful resolution for the enantiomers. Furthermore, a higher concentration of neutral MD (approximately five times) is necessary to achieve the equivalent resolution compared with the negatively charged MD.  相似文献   

7.
Bin Chen  Yingxiang Du  Ping Li 《Electrophoresis》2009,30(15):2747-2754
A wide number of chiral selectors have been employed in CE and among them macrocyclic antibiotics exhibited excellent enantioselective properties toward plenteous racemic drugs. Different from macrocyclic antibiotics, the use of lincomycin antibiotics as chiral selectors has not been reported previously. In this study clindamycin phosphate belonging to the group of lincomycin antibiotics is first used as a novel chiral selector for the enantiomeric separations of several racemic basic drugs, which possess high separability, consisting of nefopam, citalopram, tryptophan, chlorphenamine and propranolol. Other basic drugs giving partial enantioseparation include tryptophan methyl ester, metoprolol and atenolol. Clindamycin phosphate possesses advantages such as high solubility and low viscosity in the water and very weak UV absorption. In the course of this work we observed that both migration time and enantioseparation were influenced by several parameters such as pH of the BGE, clindamycin concentration, capillary temperature, applied voltage and organic modifier. The optimum pH that was in the neutral or weak basic region but varied among drugs, a low capillary temperature and a clindamycin concentration of 60 or 80 mM are recommended as the optimum conditions for chiral separation of these drugs. Moreover, comparison of the influences of the studied parameters was further investigated by means of Statistical Product and Service Solutions in this paper.  相似文献   

8.

This review focuses on the evolution of Pirkle-type chiral stationary phases (CSPs), based on chiral recognition mechanism of small molecules and applications directly related with Medicinal Chemistry. Therefore, the strategies to plan these chiral selectors for enantioseparation of diverse therapeutic classes of chiral drugs and the understanding of the recognition mechanism are emphasized. The planning of Pirkle and co-workers to design different classes of CSPs was initially based on NMR studies, following the principle of reciprocity together with chromatographic results and studies of chiral recognition phenomena. All those features are described and critically discussed in this review. Finally, based on general principles established by Pirkle’s work it can be inferred that diverse chiral small molecules can be successfully used as chromatographic tools for enantiomeric resolution. In this context, several research groups were inspired on Pirkle’s design to develop new CSPs. Xanthone derivatives bonded to chiral groups were also exploited as selectors for CSPs and are briefly reported.

  相似文献   

9.
This review focuses on the evolution of Pirkle-type chiral stationary phases (CSPs), based on chiral recognition mechanism of small molecules and applications directly related with Medicinal Chemistry. Therefore, the strategies to plan these chiral selectors for enantioseparation of diverse therapeutic classes of chiral drugs and the understanding of the recognition mechanism are emphasized. The planning of Pirkle and co-workers to design different classes of CSPs was initially based on NMR studies, following the principle of reciprocity together with chromatographic results and studies of chiral recognition phenomena. All those features are described and critically discussed in this review. Finally, based on general principles established by Pirkle’s work it can be inferred that diverse chiral small molecules can be successfully used as chromatographic tools for enantiomeric resolution. In this context, several research groups were inspired on Pirkle’s design to develop new CSPs. Xanthone derivatives bonded to chiral groups were also exploited as selectors for CSPs and are briefly reported.  相似文献   

10.
Almost all gas-chromatographic chiral stationary phases (CSPs) are complex systems containing one or more chiral selector(s) dissolved in, or bonded to, an achiral solvent such as squalane or poly(dimethylsiloxane). The presence of different components in the total CSP, interacting independently with the analyte enantiomers, impairs the elucidation of enantiorecognition mechanisms and complicates the optimization of enantioseparations. In the present work a quantitative analysis of the influence of different factors on the observed enantioselectivity is performed. The parameters varied in this study were the composition of the CSP, the concentration and the enantiomeric excess of the chiral selector(s) and the presence of achiral selectors (including racemic compositions). Special attention is given to the determination of distribution and association constants, as well as apparent and true enantioseparation factors.  相似文献   

11.
Rizzi AM  Kremser L 《Electrophoresis》1999,20(17):3410-3416
Enantioseparation of dansylated as well as 6-aminoquinolyl-N-hydroxysuccinimidylcarbamate (AQC)-derivatized amino acids by means of capillary isoelectric focusing using various cyclodextrin derivatives is demonstrated. Separation is based on the enantioselective shift of the isoelectric points upon complexation with the chiral selectors. The zwitterionic, diastereomeric analyte-cyclodextrin complexes exhibited differences in the pI values up to more than 0.25 pI units. Enantioresolution was achieved for a number of derivatized amino acids and various selectors added to the carrier ampholyte solution. The hydroxypropyl-beta-cyclodextrin proved to be the best selector for this purpose. Enantioseparation as dependent on the selector concentration was evaluated in a range between 5 and 30 mM. Separation could be attained down to selector concentrations corresponding to a degree of complexation as low as 30%. The peaks appear according to the degree of complexation between the positions adopted without and with full complexation. The kinetics of complex formation and dissociation was fast enough in most instances to produce single peaks, even with complexation degrees near 0.5 and significant pI shifts. Peak widths were slightly enlarged in these instances. The method offers excellent perspectives for preparative applications.  相似文献   

12.
A non-aqueous capillary electrophoretic method developed for the enantioseparation of N-protected amino acids has been applied to the investigation of five new quinine and quinidine derivatives as chiral selectors: 1-adamantyl carbamoylated quinine, 3,4-dichlorophenyl carbamoylated quinidine, allyl carbamoylated dihydroquinine, allyl carbamoylated dihydroquinidine and 1-methyl quininium iodide. The composition of the background electrolyte was 12.5 mM ammonia, 100 mM octanoic acid in an ethanol-methanol (60:40 v/v) mixture containing a 10 mM concentration of the chiral selector. Under these conditions, the enantioseparation of a series of various benzoyl, 3,5-dinitrobenzoyl and 3,5-dinitrobenzyloxycarbonyl amino acid derivatives was studied with respect to selectand-selector relationship and enantioselectivity.  相似文献   

13.
Chiral resolution is very important and still a big challenge due to different biological activity and same physicochemical property of one pair (R)- and (S)-isomer. There is no doubt that chiral selectors are essentially needed for chiral resolution, which can stereoselectively interact with a pair of isomers. To date, a large amount of optically active helical polymers as chiral selectors have been synthesized via two strategies. First, the target helical polymers are derived from natural polysaccharide such as cellulose and amylose. Second, they can be synthesized by polymerization of chiral monomers. Alternatively, an achiral polymer is prepared first followed by static or dynamic chiral induction. Furthermore, a part of them is harnessed as chiral stationary phases for chromatographic chiral separation and as chiral adsorbents for enantioselective adsorption/crystallization, resulting in good enantioseparation efficiency. In summary, the present review will focus on recent progress of the polymers with optical activity for chiral resolution, especially the literature published in the past 10 years. In addition, development prospects and future challenges of optically active helical polymers will be discussed in detail.  相似文献   

14.
Enantioseparation by the electromigration-based method is well-established and widely discussed in the literature. Electrophoretic strategies have been used to baseline resolve complex enantiomeric mixtures, typically using a selector substance into the background electrolyte (BGE) from capillaries to microchips. Along with developing new materials/substances for enantioseparations, it is the concern about the green analytical chemistry (GAC) principles for method development and application. This review article brings a last decade's update on the publications involving enantioseparation by electrophoresis for capillary and microchip systems. It also brings a critical discussion on GAC principles and new green metrics in the context of developing an enantioseparation method. Chemical and green features of native and modified cyclodextrins are discussed. Still, given the employment of greener substances, ionic liquids and deep-eutectic solvents are highlighted, and some new selectors are proposed. For all the mentioned selectors, green features about their production, application, and disposal are considered. Sample preparation and BGE composition in GAC perspective, as well as greener derivatization possibilities, were also addressed. Therefore, one of the goals of this review is to aid the electrophoretic researchers to look where they have not.  相似文献   

15.
张娟  魏文娟  陈伟  吴元欣  柏正武 《色谱》2010,28(10):971-976
为研究选择体的构型对双选择体固定相手性识别的影响,以(1S,2S)-(~)-二苯基乙二胺及L-(~)-二苯甲酰酒石酸为手性源,合成了一种新的双选择体固定相,并用不同结构的手性样品测试了其手性分离能力。结果表明,这种固定相与以(1R,2R)-(+)-二苯基乙二胺及L(~)-二苯甲酰酒石酸为手性源制备的双选择体固定相有相当的手性分离能力,但这两种固定相所能分离的化合物不尽相同。对双选择体固定相中两个选择体的构型对固定相手性识别的影响进行了探讨。在手性识别中,以不同手性源制备的两个选择体的立体构型不能同时与一个手性样品的立体构型相匹配,从而导致相应的双选择体固定相手性分离能力的下降。  相似文献   

16.
New chiral stationary phases derived from enantiomerically pure derivatives of cysteine carrying sulfonic acid groups are synthesized and evaluated for enantiomer separation of chiral bases by non aqueous capillary electrochromatography after bonding to a linker and grafting upon thiol-modified silica particles. Structural modifications of these low molecular weight chiral selectors are investigated and discussed in terms of apparent enantioselectivities and resolution factors based on the enantiomeric separations of a set of chiral bases including beta-blockers, beta-sympathomimetics and other basic drugs. The influence of the mobile phase constitution and its flow velocity on the enantioseparation by nonaqueous capillary electrochromatography is also briefly evaluated and discussed for the chiral substances investigated.  相似文献   

17.
张琪 《色谱》2020,38(9):1028-1037
在现代分离科学中,手性化合物的分离分析一直是研究的重点和难点。相比于高效液相色谱(HPLC)、气相色谱(GC)等传统色谱分析方法,毛细管电泳(CE)技术凭借其高效率、低消耗、分离模式多样化等诸多优势,已经发展成为手性分离研究领域最有应用前景的分析方法之一。近年来,研究人员在CE手性分析方法的构建过程中,基于毛细管电动色谱(EKC)、配体交换毛细管电泳(LECE)、毛细管电色谱(CEC)等各种基础电泳模式,不断地对传统手性分离体系进行优化和改造,构建出了许多高性能的新型手性CE分离体系。如利用各类功能化离子液体以"手性离子液体协同拆分""手性离子液体配体交换""离子液体手性选择剂"等模式设计出多种基于离子液体的CE手性分离体系;利用纳米材料独特的尺寸效应、多样性、可设计性等特点,直接或与传统手性选择剂有机结合构建CE手性分离体系。此外,金属有机骨架材料修饰、低共熔溶剂修饰、非连续分段式部分填充等各式新颖的CE手性分离体系也都被研究人员成功开发,并表现出较大的发展潜力。该综述将对近年来(尤其是2015~2019年)此类新型CE手性分离体系的发展状况进行梳理,并结合相应的手性识别机理研究和手性CE方法实际应用情况,对该领域存在的问题及发展前景进行分析和展望。  相似文献   

18.
The latest developments in chiral analysis of β‐blocker drugs by capillary electromigration techniques are reviewed in this article. Following the previous review by Aturki et al. [Electrophoresis 2011, 32, 2602–2628], this review includes the papers published during the period from January 2011 to December 2013. During this time, some novel chiral selectors were reported and applied to improve the enantioseparation of β‐blocker drugs and structurally related compounds. These chiral selectors include CDs and their derivatives, macrocyclic antibiotics, tartrate complexs, the monolithic molecularly imprinted polymer, and the polymeric surfactants. In addition, this article summarizes the methodological improvements for enhancing sensitivity in chiral analysis of β‐blockers and structurally related compounds by CE. The involved authors described the use of online sample preconcentration techniques to increase the detection sensitivity in the enantiomeric analysis of a broad range of samples.  相似文献   

19.
The search for new and effective chiral selectors capable of separating a wide variety of enantiomeric compounds is an ongoing process. In the past decade, macrocyclic antibiotics have proved to be an exceptionally useful class of chiral selectors for the separation of enantiomers of biological and pharmacological importance by means of HPLC, TLC and electrophoresis. More chiral analytes have been resolved through the use of glycopeptides than with all the other macrocyclic antibiotics combined (ansamycins, thiostrepton, aminoglycosides, etc.). The glycopeptides avoparcin, teicoplanin, ristocetin A and vancomycin have been extensively used as chiral selectors in the form of chiral bonded phases in HPLC, and HPLC stationary phases based on these glycopeptides have been commercialized. Teicoplanin, vancomycin, their analogs and ristocetin A seem to be the most useful glycopeptide HPLC bonded phases for the enantioseparation of proteins and unusal native and derivatized amino acids. In fact, the macrocyclic glycopeptides are to some extent complementary to one another: where partial enantioresolution is obtained with one glycopeptide, there is a high probability that baseline or better separation can be obtained with another. This review sets out to characterize the physicochemical properties of these antibiotics and their application in the enantioseparations of amino acids. The mechanism of separation, the sequence of elution of the stereoisomers and the relation to the absolute configuration are also discussed.  相似文献   

20.
In capillary electrophoresis (CE), separation of enantiomers of a chiral compound can be achieved through the chiral interactions and/or complex formation between the chiral selector and the enantiomeric analytes on leaving their diastereomeric forms with different stability constants and hence different mobilities. A great number of chiral selectors have been employed in CE and among them macrocyclic antibiotics exhibited excellent enantioselective properties towards a wide number of racemic compounds. The use of azithromycin (AZM) as a chiral selector has not been reported previously. This work reports the use of AZM as a chiral selector for the enantiomeric separations of five chiral drugs and one amino acid (tryptophan) in CE. The enantioseparation is carried out using polar organic mixtures of acetonitrile (ACN), methanol (MeOH), acetic acid and triethylamine as run buffer. The influences of the chiral selector concentration, ACN/MeOH ratio, applied voltage and capillary temperature on enantioseparation are investigated. The results show that AZM is a viable chiral selector in CE for the enantioseparation of the type of chiral drugs investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号