首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
G-quadruplexes, a family of tetraplex helical nucleic acid topologies, have emerged in recent years as novel targets, with untapped potential for anticancer research. Their potential stems from the fact that G-quadruplexes occur in functionally-important regions of the human genome, such as the telomere tandem sequences, several proto-oncogene promoters, other regulatory regions and sequences of DNA (e.g., rDNA), as well as in mRNAs encoding for proteins with roles in tumorigenesis. Modulation of G-quadruplexes, via interaction with high-affinity ligands, leads to their stabilization, with numerous observed anticancer effects. Despite the fact that only a few lead compounds for G-quadruplex modulation have progressed to clinical trials so far, recent advancements in the field now create conditions that foster further development of drug candidates. This review highlights biological processes through which G-quadruplexes can exert their anticancer effects and describes, via selected case studies, progress of the last few years on the development of efficient and drug-like G-quadruplex-targeted ligands, intended to harness the anticancer potential offered by G-quadruplexes. The review finally provides a critical discussion of perceived challenges and limitations that have previously hampered the progression of G-quadruplex-targeted lead compounds to clinical trials, concluding with an optimistic future outlook.  相似文献   

2.
Telomeric G-quadruplexes have recently emerged as drug targets in cancer research. Herein, we present the first NMR structure of a telomeric DNA G-quadruplex that adopts the biologically relevant hybrid-2 conformation in a ligand-bound state. We solved the complex with a metalorganic gold(III) ligand that stabilizes G-quadruplexes. Analysis of the free and bound structures reveals structural changes in the capping region of the G-quadruplex. The ligand is sandwiched between one terminal G-tetrad and a flanking nucleotide. This complex structure involves a major structural rearrangement compared to the free G-quadruplex structure as observed for other G-quadruplexes in different conformations, invalidating simple docking approaches to ligand–G-quadruplex structure determination.  相似文献   

3.
G-quadruplex DNA show structural polymorphism, leading to challenges in the use of selective recognition probes for the accurate detection of G-quadruplexes in vivo. Herein, we present a tripodal cationic fluorescent probe, NBTE , which showed distinguishable fluorescence lifetime responses between G-quadruplexes and other DNA topologies, and fluorescence quantum yield (Φf) enhancement upon G-quadruplex binding. We determined two NBTE -G-quadruplex complex structures with high Φf values by NMR spectroscopy. The structures indicated NBTE interacted with G-quadruplexes using three arms through π–π stacking, differing from that with duplex DNA using two arms, which rationalized the higher Φf values and lifetime response of NBTE upon G-quadruplex binding. Based on photon counts of FLIM, we detected the percentage of G-quadruplex DNA in live cells with NBTE and found G-quadruplex DNA content in cancer cells is 4-fold that in normal cells, suggesting the potential applications of this probe in cancer cell detection.  相似文献   

4.
G-quadruplexes comprise a class of secondary structures that are formed in guanine-rich sequences in eukaryotic genomes and play a crucial role in the regulation of many biological events. G-quadruplexes have become targets for anticancer drugs with high selectivity vs. duplex DNA and low cytotoxicity against normal cells. Natural products and their derivatives display polymorphism, structural complexity, and potent activity. It is, therefore, reasonable to seek ligands targeting G-quadruplexes from natural products. Recently, many successful examples have been reported, showing ligands with excellent anticancer activities. In this review, we summarized the development of research on natural products and derivatives that target G-quadruplex structures in an effort to guide future studies.  相似文献   

5.
DNA G-四链体识别探针研究进展   总被引:1,自引:0,他引:1  
G-四链体是一种由富含鸟嘌呤核酸序列形成的独特的二级结构,广泛分布于真核生物基因组,如端粒DNA、r DNA和一系列基因中的启动子区域。G-四链体结构对很多重要的生理过程如基因的转录、复制、重组以及保持染色体的稳定性方面具有重要作用。G-四链体的特异、高灵敏检测将为进一步了解G-四链体结构在人类细胞基因组中的分布、功能和机制奠定基础,也可能为靶向G-四链体的肿瘤治疗方法提供新的思路。因而过去几十年人们一直致力于开发设计具有高选择性和高灵敏度的G-四链体识别探针,这些探针已经广泛应用于溶液中G-四链体的识别,而且具有良好的选择性。目前也有少数探针能够直接用于检测活体G-四链体结构。本文综述了一些常见的靶向G-四链体的小分子配体,以及它们在染色体和活体细胞G-四链体检测中的应用。笔者希冀本文能为设计识别G-四链体的高性能探针,进一步实现活细胞内G-四链体的检测提供借鉴。  相似文献   

6.
Selective interactions of cationic porphyrins with G-quadruplex structures   总被引:11,自引:0,他引:11  
G-quadruplex DNA presents a potential target for the design and development of novel anticancer drugs. Because G-quadruplex DNA exhibits structural polymorphism, different G-quadruplex typologies may be associated with different cellular processes. Therefore, to achieve therapeutic selectivity using G-quadruplexes as targets for drug design, it will be necessary to differentiate between different types of G-quadruplexes using G-quadruplex-interactive agents. In this study, we compare the interactions of three cationic porphyrins, TMPyP2, TMPyP3, and TMPyP4, with parallel and antiparallel types of G-quadruplexes using gel mobility shift experiments and a helicase assay. Gel mobility shift experiments indicate that TMPyP3 specifically promotes the formation of parallel G-quadruplex structures. A G-quadruplex helicase unwinding assay reveals that the three porphyrins vary dramatically in their abilities to prevent the unwinding of both the parallel tetrameric G-quadruplex and the antiparallel hairpin dimer G-quadruplex DNA by yeast Sgs1 helicase (Sgs1p). For the parallel G-quadruplex, TMPyP3 has the strongest inhibitory effect on Sgs1p, followed by TMPyP4, but the reverse is true for the antiparallel G-quadruplex. TMPyP2 does not appear to have any effect on the helicase-catalyzed unwinding of either type of G-quadruplex. Photocleavage experiments were carried out to investigate the binding modes of all three porphyrins with parallel G-quadruplexes. The results reveal that TMPyP3 and TMPyP4 appear to bind to parallel G-quadruplex structures through external stacking at the ends rather than through intercalation between the G-tetrads. Since intercalation between G-tetrads has been previously proposed as an alternative binding mode for TMPyP4 to G-quadruplexes, this mode of binding, versus that determined by a photocleavage assay described here (external stacking), was subjected to molecular dynamics calculations to identify the relative stabilities of the complexes and the factors that contribute to these differences. The DeltaG(o) for the external binding mode was found to be driven by DeltaH(o) with a small unfavorable TDeltaS(o) term. The DeltaG(o) for the intercalation binding model was driven by a large TDeltaS(o) term and complemented by a small DeltaH(o) term. One of the main stabilizing components of the external binding model is the energy of solvation, which favors the external model over the intercalation model by -67.94 kcal/mol. Finally, we propose that intercalative binding, although less favored than external binding, may occur, but because of the nature of the intercalative binding, it is invisible to the photocleavage assay. This study provides the first experimental insight into how selectivity might be achieved for different G-quadruplexes by using structural variants within a single group of G-quadruplex-interactive drugs.  相似文献   

7.
Guanine-rich DNA and RNA sequences can fold into unique structures known as G-quadruplexes. The structures of G-quadruplexes can be divided into several classes, depending on the parallel or antiparallel nature of the strands and the number of G-rich tracts present in an oligonucleotide. Oligonucleotides with single tracts of guanines form intermolecular parallel tetrameric G-quadruplexes. Oligonucleotides with two tracts of guanosines separated by two or more bases can form both intermolecular antiparallel fold-back dimeric and parallel tetrameric G-quadruplexes, and those with four tracts of guanosines can form both intramolecular parallel and antiparallel structures. Intramolecular G-qaudruplexes can fold into several folding topologies including antiparallel crossover basket, antiparallel chair, and parallel propeller. The ability to control the folding of G-quadruplexes would allow the physical, biochemical, and biological properties of these various folding topologies to be studied. Previously, the known methods to control the folding topology of G-quadruplexes included changing the buffer by varying the mono- and divalent cations that are present, and by changing the DNA sequence. Because the glycosidic bonds in the G-quartets of G-quadruplexes with parallel strands are in the anti conformation, we reasoned that incorporation of nucleoside analogues that prefer the anti conformation of the glycosidic bond into G-rich sequences would increase the preference for parallel G-quadruplex formation. As predicted, by positioning the conformationally constrained nucleotide analogue 2'-O-4'-C-methylene-linked ribonucleotide into specific positions of a DNA G-quadruplex we were able to shift the thermodynamically favored structure of a G-quadruplex from an antiparallel to a parallel structure.  相似文献   

8.
G-rich nucleic acid oligomers can form G-quadruplexes built by G-tetrads stacked upon each other. Depending on the nucleotide sequence, G-quadruplexes fold mainly with two topologies: parallel, in which all G-tracts are oriented parallel to each other, or antiparallel, in which one or more G-tracts are oriented antiparallel to the other G-tracts. In the former topology, all glycosidic bond angles conform to anti conformations, while in the latter topology they adopt both syn and anti conformations. It is of interest to understand the molecular forces that govern G-quadruplex folding. Here, we approach this problem by examining the impact of LNA (locked nucleic acid) modifications on the folding topology of the dimeric model system of the human telomere sequence. In solution, this DNA G-quadruplex forms a mixture of G-quadruplexes with antiparallel and parallel topologies. Using CD and NMR spectroscopies, we show that LNA incorporations can modulate this equilibrium in a rational manner and we establish a relationship between incorporation of LNA nucleotides in syn and/or anti positions and the shift of the equilibrium to obtain exclusively the parallel G-quadruplex. The change in topology is driven by a combination of the C3'-endo puckering of LNA nucleotides and their preference for the anti glycosidic conformation. In addition, the parallel LNA-modified G-quadruplexes are thermally stabilised by about 11 °C relative to their DNA counterparts.  相似文献   

9.
10.
Chiral molecular recognition of human telomeric DNA is important for rational drug design and developing structural probes of G-quadruplexes. Here we report that a chiral supramolecular complex can selectively induce human telomeric G-quadruplex formation and discriminate different G-quadruplex sequences under salt-deficient conditions studied by circular dichroism (CD), UV meltings, stopped-flow spectroscopy, fluorescence resonance energy transfer, enzyme cleavage, and gel electrophoresis. P-enantiomer induced G-quadruplex formation is fast and does not require a large excess of P enantiomer. More importantly, this chiral compound induces loop sequence-dependent G-quadruplex formation.  相似文献   

11.
《印度化学会志》2021,98(6):100078
This review article discusses the non-covalent interaction of various probe molecules of different structural diversity with G-quadruplex forming Guanine rich DNA sequences, revealing remarkable stimuli responsive fluorescence changes which are appropriate for sensing and other technological applications. Tailor-made probes having quadruplex inducing/stabilizing attachments of well-known dye molecules and its derivatives such as, coumarins, cyanines, thiazole orange, pyrazines, thioflavin T, triphenylmethane, tetraphenylethene, dimethylindole red etc have been employed. These probes express their modulations due to the binding to the topologically distinct G-quadruplexes through structural rigidization, aggregation propensity, binding strengths, tunability and other competitive interactions and are viewed as remarkable changes particularly in their fluorescence features. Based on this concept, several studies have reported the development of label free fluorescence sensor for the selective detection of topology specific G-quadruplexes, therapeutic, early diagnostic of cancer, cation-sensing, trace level detection of an anti-cancer drugs etc. have been accomplished. In vivo imaging is also achieved using a cholesterol attached G-quadruplex forming oligonucleotide probe labelled with specific dyes. Since the fine details of the topological information and control mechanisms of G-quadruplex forming sequences are very much essential for targeting and tuning several important biological processes relevant to cancer proliferation and developing stimuli responsive sensors, it is sure that many more contributions in this field will emerge in the coming years.  相似文献   

12.
易卓云  王欣雨  张妍  苏敏  赵博  隋广超  史金铭 《化学通报》2021,84(12):1284-1291
G-四链体是一类由Hoogsteen氢键维持稳定的,富含鸟嘌呤的DNA或RNA二级结构。人类基因组中存在大量潜在的形成G-四链体的序列,所形成的G-四链体结构能够调控基因组的稳定性、DNA复制和基因表达,其中包括很多与癌症相关基因。因此寻找能够诱导DNA的G富集区域形成G-四链体结构的配体,进而筛选潜在抗癌药物的先导化合物,已成为癌症治疗研究的热点之一。本文对近年来发现和设计的以G-四链体为靶点的小分子配体,按照靶向的G-四链体结构类型和配体的分子结构进行分类,综述了这类化合物在癌症治疗方面的研究进展,分析了相关靶向治疗存在的问题,并对未来的研究方向进行了展望。  相似文献   

13.
In the current study, we used a combination of gel electrophoresis, circular dichroism, and UV melting analysis to investigate the structure and stability of G-quadruplexes formed by long telomeric DNAs from Oxytricha and human, where the length of the repeat (n)=4 to 12. We found that the Oxytricha telomeric DNAs, which have the sequence (TTTTGGGG)n, folded into intramolecular and intermolecular G-quadruplexes depending on the ionic conditions, whereas human telomeric DNAs, which have the sequence (TTAGGG)n, formed only intramolecular G-quadruplexes in all the tested conditions. We further estimated the thermodynamic parameters of the intramolecular G-quadruplex. We found that thermodynamic stabilities of G-quadruplex structures of long telomeric DNAs (n=5 to 12) are mostly independent of sequence length, although telomeric DNAs are more stable when n=4 than when n>or=5. Most importantly, when n is a multiple of four, the change in enthalpy and entropy for G-quadruplex formation increased gradually, demonstrating that the individual G-quadruplex units are composed of four repeats and that the individual units do not interact. Therefore, we propose that the G-quadruplexes formed by long telomeric DNAs (n>or=8) are bead-on-a-string structures in which the G-quadruplex units are connected by one TTTT (Oxytricha) or TTA (human) linker. These results should be useful for understanding the structure and function of telomeres and for developing improved therapeutic agents targeting telomeric DNAs.  相似文献   

14.
DNA exhibits structural flexibility and may adopt also tetraplex structures known as guanine-quadruplexes or G-quadruplexes. These G-quadruplexes have recently received great attention because G-rich sequences are often found in genome and because of their potential links to mechanisms that relate to cancer, HIV, and other diseases. The unique structure of quadruplexes has also stimulated development of new analytical and bioanalytical assays based on fluorescence resonance energy transfer (FRET). Intramolecular folding of a flexible single-stranded DNA molecule into a compact G-quadruplex is a structural transition leading to closer proximity of its 5'- and 3'-ends. Thus, labeling both ends of a DNA strand with donor and acceptor fluorophores enables monitoring the quadruplex formation process by means of the FRET signal. This review shows how FRET technique contributes to G-quadruplex research and focuses mainly on analytical applications of FRET-labeled quadruplexes. Applications include studies of structural transitions of quadruplexes, FRET-based selection of ligands that bind to quadruplexes, design of molecular probes for protein recognition and development of sensors for detection of potassium ions in aqueous solution.  相似文献   

15.
The G-quadruplex, a four-stranded DNA structure with stacked guanine tetrads (G-quartets), has recently been attracting attention because of its critical roles in vitro and in vivo. In particular, the G-quadruplex functions as ligands for metal ions and aptamers for various molecules. Interestingly, the G-quadruplex can show peroxidase-like activity with an anionic porphyrin, iron (III) protoporphyrin IX (hemin). Importantly, hemin binds to G-quadruplexes with high selectivity over single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA), which is attributable to an electrostatic repulsion of phosphate groups in ssDNA and dsDNA. The G-quadruplex and hemin-G-quadruplex complex allow development of sensing techniques to detect DNA, metal ions and proteins. In addition to hemin, anionic phthalocyanines also bind to the G-quadruplex formed by human telomere DNA, specifically over ssDNA and dsDNA. Since the binding of anionic phthalocyanines to the G-quadruplex causes an inhibition of telomerase activity, which plays a role in the immortal growth of cancer cells, anionic phthalocyanines are promising as novel anticancer drug candidates. This review focuses on the specific binding of hemin and anionic phthalocyanines to G-quadruplexes and the applications in vitro and in vivo of this binding property.  相似文献   

16.
The development of rapid and simple approaches for detection of G-quadruplex DNA structures has attracted significant attention to disclose their diverse physiological and pathological functions. Thiazole orange (TO) is a common fluorescence probe used for the detection of G-quadruplexes. However, it still suffers from some common problems like non-selective for G-quadruplex and emission in the lower wavelength region of spectrum, thus hampering its further applications. Probes with turn-on fluorescence in the far-red region are highly sought-after due to minimal auto-fluorescence and cellular damage. In this paper, we described a far-red fluorescent probe (L-1) by introducing an amine group into styrylquinolinium scaffold. The experimental results indicated that L-1 exhibited significant fluorescence enhancement when treated with G-quadruplexes but retained weak fluorescence in the presence of duplex DNAs. In addition, this probe also displayed higher binding affinity for parallel G-quadruplexes. The characteristics of L-1 were further investigated with UV–vis spectrophotometry, fluorescence, circular dichroism, KI quenching, FID assay and molecular docking to validate optical photophysical properties, as well as the selectivity, sensitivity and detailed binding mode toward G-quadruplex DNAs.  相似文献   

17.
The widespread of G-quadruplex-forming sequences in genomic DNA and their role in regulating gene expression has made G-quadruplex structures attractive therapeutic targets against a variety of diseases, such as cancer. Information on the structure of G-quadruplexes is crucial for understanding their physiological roles and designing effective drugs against them. Resolving the structures of G-quadruplexes, however, remains a challenge especially for those in double-stranded DNA. In this work, we developed a photocleavage footprinting technique to determine the folding orientation of each individual G-tract in intramolecular G-quadruplex formed in both single- and double-stranded nucleic acids. Based on the differential photocleavage induced by a ligand tetrakis(2-trimethylaminoethylethanol) phthalocyaninato zinc tetraiodine (Zn-TTAPc) to the guanines between the two terminal G-quartets in a G-quadruplex, this method identifies the guanines hosted in each terminal G-quartets to reveal G-tract orientation. The method is extremely intuitive, straightforward, and requires little expertise. Besides, it also detects G-quadruplex formation in long single- and double-stranded nucleic acids.  相似文献   

18.
Li  Fangyuan  Guo  Dan  Kang  Lin 《Analytical and bioanalytical chemistry》2019,411(21):5555-5561

G-quadruplexes have been widely researched as new targets for cancer treatment owing to their non-canonical structure and crucial role in biological processes. Although attention has been paid to the development of selective G-quadruplex ligands, few studies have focused on the binding affinity of stereoisomers towards G-quadruplex, which will be conducive to support the optimal design of G-quadruplex ligands in future studies. Here, tetrandrine and isotetrandrine were used to study the binding affinity and difference of stereoisomers towards G-quadruplex structures. The results showed that tetrandrine had a high possibility of binding to the N-myc and Bcl-2 G-quadruplexes through hydrogen bonding, whereas the possibility of binding of isotetrandrine was low and it seemed to have no possibility of forming hydrogen bonds. Our study shows that optical isomerism of ligand molecules has an important effect on G-quadruplex recognition, which is helpful for the design of G-quadruplex ligands in future studies.

Graphical abstract

  相似文献   

19.
G-quadruplexes are higher-order DNA and RNA structures formed from guanine-rich sequences. These structures have recently emerged as a new class of potential molecular targets for anticancer drugs. An understanding of the three-dimensional interactions between small molecular ligands and their G-quadruplex targets in solution is crucial for rational drug design and the effective optimization of G-quadruplex ligands. Thus far, rational ligand design has been focused mainly on the G-quartet platform. It should be noted that small molecules can also bind to loop nucleotides, as observed in crystallography studies. Hence, it would be interesting to elucidate the mechanism underlying how ligands in distinct binding modes influence the flexibility of G-quadruplex. In the present study, based on a crystal structure analysis, the models of a tetra-substituted naphthalene diimide ligand bound to a telomeric G-quadruplex with different modes were built and simulated with a molecular dynamics simulation method. Based on a series of computational analyses, the structures, dynamics, and interactions of ligand-quadruplex complexes were studied. Our results suggest that the binding of the ligand to the loop is viable in aqueous solutions but dependent on the particular arrangement of the loop. The binding of the ligand to the loop enhances the flexibility of the G-quadruplex, while the binding of the ligand simultaneously to both the quartet and the loop diminishes its flexibility. These results add to our understanding of the effect of a ligand with different binding modes on G-quadruplex flexibility. Such an understanding will aid in the rational design of more selective and effective G-quadruplex binding ligands.  相似文献   

20.
The process of structure-based drug design   总被引:6,自引:0,他引:6  
The field of structure-based drug design is a rapidly growing area in which many successes have occurred in recent years. The explosion of genomic, proteomic, and structural information has provided hundreds of new targets and opportunities for future drug lead discovery. This review summarizes the process of structure-based drug design and includes, primarily, the choice of a target, the evaluation of a structure of that target, the pivotal questions to consider in choosing a method for drug lead discovery, and evaluation of the drug leads. Key principles in the field of structure-based drug design will be illustrated through a case study that explores drug design for AmpC beta-lactamase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号