首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multivalent protein-carbohydrate interactions are involved in the initial stages of many fundamental biological and pathological processes through lectin-carbohydrate binding. The design of high affinity ligands is therefore necessary to study, inhibit and control the processes governed through carbohydrate recognition by their lectin receptors. Carbohydrate-functionalised gold nanoclusters (glyconanoparticles, GNPs) show promising potential as multivalent tools for studies in fundamental glycobiology research as well as biomedical applications. Here we present the synthesis and characterisation of galactose functionalised GNPs and their effectiveness as binding partners for PA-IL lectin from Pseudomonas aeruginosa. Interactions were evaluated by hemagglutination inhibition (HIA), surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC) assays. Results show that the gold nanoparticle platform displays a significant cluster glycoside effect for presenting carbohydrate ligands with almost a 3000-fold increase in binding compared with a monovalent reference probe in free solution. The most effective GNP exhibited a dissociation constant (K(d)) of 50 nM per monosaccharide, the most effective ligand of PA-IL measured to date; another demonstration of the potential of glyco-nanotechnology towards multivalent tools and potent anti-adhesives for the prevention of pathogen invasion. The influence of ligand presentation density on their recognition by protein receptors is also demonstrated.  相似文献   

2.
The synthesis of a new rigid spacer based on carbohydrate-triazole repeating units and their incorporation into divalent systems is described. Inhibition studies showed that a well-matched system with a rigid spacer with flexible ends leads to the most potent inhibition of Pseudomonas aeruginosa lectin LecA.  相似文献   

3.
4.
The binding of seven multivalent glycoconjugates displaying linear or antenna-like structures and different electronic environments were evaluated towards PA-IL on a DNA-based carbohydrate microarray. The affinity can be modulated by the charge and the topology of the galactosylated derivatives.  相似文献   

5.
6.
LecA is a galactose‐binding tetrameric lectin from Pseudomonas aeruginosa involved in infection and biofilm formation. The emergent antibiotic resistance of P. aeruginosa has made LecA a promising pharmaceutical target to treat such infections. To develop LecA inhibitors, we exploit the unique helical structure of polyproline peptides to create a scaffold that controls the galactoside positions to fit their binding sites on LecA. With a modular scaffold design, both the galactoside ligands and the inter‐ligand distance can be altered conveniently. We prepared scaffolds with spacings of 9, 18, 27, and 36 Å for ligand conjugation and found that glycopeptides with galactosides ligands three helical turns (27 Å) apart best fit LecA. In addition, we tested different galactose derivatives on the selected scaffold (27 Å) to improve the binding avidity to LecA. The results validate a new multivalent scaffold design and provide useful information for LecA inhibitor development.  相似文献   

7.
Homo- and heterofunctionalized glycoclusters with galactose and/or fucose residues targeting both PA-IL and PA-IIL lectins of Pseudomonas aeruginosa were synthesized using "Click" chemistry and DNA chemistry. Their binding to lectins (separately or in a mixture) was studied using a DNA Directed Immobilization carbohydrate microarray. Homoglycoclusters bind selectively to their lectin while the heteroglycocluster binds simultaneously both lectins with a slight lower affinity.  相似文献   

8.
Lectin LecA is a virulence factor of Pseudomonas aeruginosa involved in lung injury, mortality, and cellular invasion. Ligands competing with human glycoconjugates for LecA binding are thus promising candidates to counteract P. aeruginosa infections. We have identified a novel divalent ligand from a focused galactoside(Gal)‐conjugate array which binds to LecA with very high affinity (Kd=82 nM ). Crystal structures of LecA complexed with the ligand together with modeling studies confirmed its ability to chelate two binding sites of LecA. The ligand lowers cellular invasiveness of P. aeruginosa up to 90 % when applied in the range of 0.05–5 μM . Hence, this ligand might lead to the development of drugs against P. aeruginosa infection.  相似文献   

9.
10.
Bacterial adhesion, biofilm formation and host cell invasion of the ESKAPE pathogen Pseudomonas aeruginosa require the tetravalent lectins LecA and LecB, which are therefore drug targets to fight these infections. Recently, we have reported highly potent divalent galactosides as specific LecA inhibitors. However, they suffered from very low solubility and an intrinsic chemical instability due to two acylhydrazone motifs, which precluded further biological evaluation. Here, we isosterically substituted the acylhydrazones and systematically varied linker identity and length between the two galactosides necessary for LecA binding. The optimized divalent LecA ligands showed improved stability and were up to 1000-fold more soluble. Importantly, these properties now enabled their biological characterization. The lead compound L2 potently inhibited LecA binding to lung epithelial cells, restored wound closure in a scratch assay and reduced the invasiveness of P. aeruginosa into host cells.  相似文献   

11.
A family of fifteen glycoclusters based on a cyclic oligo‐(1→6)‐β‐D ‐glucosamine core has been designed as potential inhibitors of the bacterial lectin LecA with various valencies (from 2 to 4) and linkers. Evaluation of their binding properties towards LecA has been performed by a combination of hemagglutination inhibition assays (HIA), enzyme‐linked lectin assays (ELLA), and isothermal titration microcalorimetry (ITC). Divalent ligands displayed dissociation constants in the sub‐micromolar range and tetravalent ligands displayed low nanomolar affinities for this lectin. The influence of the linker could also be demonstrated; aromatic moieties are the best scaffolds for binding to the lectin. The affinities observed in vitro were then correlated with molecular models to rationalize the possible binding modes of these glycoclusters with the bacterial lectin.  相似文献   

12.
The galactopeptide dendrimer GalAG2 ((β‐Gal‐OC6H4CO‐Lys‐Pro‐Leu)4(Lys‐Phe‐Lys‐Ile)2Lys‐His‐Ile‐NH2) binds strongly to the Pseudomonas aeruginosa (PA) lectin LecA, and it inhibits PA biofilms, as well as disperses already established ones. By starting with the crystal structure of the terminal tripeptide moiety GalA‐KPL in complex with LecA, a computational mutagenesis study was carried out on the galactotripeptide to optimize the peptide–lectin interactions. 25 mutants were experimentally evaluated by a hemagglutination inhibition assay, 17 by isothermal titration calorimetry, and 3 by X‐ray crystallography. Two of these tripeptides, GalA‐KPY (dissociation constant (KD)=2.7 μM ) and GalA‐KRL (KD=2.7 μM ), are among the most potent monovalent LecA ligands reported to date. Dendrimers based on these tripeptide ligands showed improved PA biofilm inhibition and dispersal compared to those of GalAG2 , particularly G2KPY ((β‐Gal‐OC6H4CO‐Lys‐Pro‐Tyr)4(Lys‐Phe‐Lys‐Ile)2Lys‐His‐Ile‐NH2). The possibility to retain and even improve the biofilm inhibition in several analogues of GalAG2 suggests that it should be possible to fine‐tune this dendrimer towards therapeutic use by adjusting the pharmacokinetic parameters in addition to the biofilm inhibition through amino acid substitutions.  相似文献   

13.
Anti‐infectious strategies against pathogen infections can be achieved through antiadhesive strategies by using multivalent ligands of bacterial virulence factors. LecA and LecB are lectins of Pseudomonas aeruginosa implicated in biofilm formation. A series of 27 LecA‐targeting glycoclusters have been synthesized. Nine aromatic galactose aglycons were investigated with three different linker arms that connect the central mannopyranoside core. A low‐nanomolar (Kd=19 nm , microarray) ligand with a tyrosine‐based linker arm could be identified in a structure–activity relationship study. Molecular modeling of the glycoclusters bound to the lectin tetramer was also used to rationalize the binding properties observed.  相似文献   

14.
This article is focused on the application of two types of docking software, AutoDock and DOCK. It is aimed at studying the interactions of a calcium-dependent bacterial lectin PA-IIL (from Pseudomonas aeruginosa) and its in silico mutants with saccharide ligands. The effect of different partial charges assigned to the calcium ions was tested and evaluated in terms of the best agreement with the crystal structure. The results of DOCK were further optimized by molecular dynamics and rescored using AMBER. For both software, the agreement of the docked structures and the provided binding energies were evaluated in terms of prediction accuracy. This was carried out by comparing the computed results to the crystal structures and experimentally determined binding energies, respectively. The performance of both docking software applied on a studied problem was evaluated as well. The molecular docking methods proved efficient in identifying the correct binding modes in terms of geometry and partially also in predicting the preference changes caused by mutation. Obtaining a reasonable in silico method for the prediction of lectin-saccharide interactions may be possible in the future.  相似文献   

15.
We show that X-ray magnetic circular dichroism (XMCD) can be employed to probe the oxidation states and other electronic structural features of nickel active sites in proteins. As a calibration standard, we have measured XMCD and X-ray absorption (XAS) spectra for the nickel(II) derivative of Pseudomonas aeruginosa azurin (NiAz). Our analysis of these spectra confirms that the electronic ground state of NiAz is high-spin (S = 1); we also find that the L(3)-centroid energy is 853.1(1) eV, the branching ratio is 0.722(4), and the magnetic moment is 1.9(4) mu(B). Density functional theory (DFT) calculations on model NiAz structures establish that orbitals 3d(x2-y2) and 3d(z2) are the two valence holes in the high-spin Ni(II) ground state, and in accord with the experimentally determined orbital magnetic moment, the DFT results also demonstrate that both holes are highly delocalized, with 3d(x2-y2) having much greater ligand character.  相似文献   

16.
17.
The [Re(I)(CO)(3)(4,7-dimethyl-1,10-phenanthroline)(histidine-124)(tryptophan-122)] complex, denoted [Re(I)(dmp)(W122)], of Pseudomonas aeruginosa azurin behaves as a single photoactive unit that triggers very fast electron transfer (ET) from a distant (2 nm) Cu(I) center in the protein. Analysis of time-resolved (ps-μs) IR spectroscopic and kinetics data collected on [Re(I)(dmp)(W122)AzM] (in which M=Zn(II), Cu(II), Cu(I); Az=azurin) and position-122 tyrosine (Y), phenylalanine (F), and lysine (K) mutants, together with excited-state DFT/time-dependent (TD)DFT calculations and X-ray structural characterization, reveal the character, energetics, and dynamics of the relevant electronic states of the [Re(I)(dmp)(W122)] unit and a cascade of photoinduced ET and relaxation steps in the corresponding Re-azurins. Optical population of [Re(I)(imidazole-H124)(CO)(3)]→dmp (1)CT states (CT=charge transfer) is followed by around 110 fs intersystem crossing and about 600 ps structural relaxation to a (3)CT state. The IR spectrum indicates a mixed Re(I)(CO)(3),A→dmp/π→π(*)(dmp) character for aromatic amino acids A122 (A=W, Y, F) and Re(I)(CO)(3)→dmp metal-ligand charge transfer (MLCT) for [Re(I)(dmp)(K122)AzCu(II)]. In a few ns, the (3)CT state of [Re(I)(dmp)(W122)AzM] establishes an equilibrium with the [Re(I)(dmp(.-))(W122(.+))AzM] charge-separated state, (3)CS, whereas the (3)CT state of the other Y, F, and K122 proteins decays to the ground state. In addition to this main pathway, (3)CS is populated by fs- and ps-W(indole)→Re(II) ET from (1)CT and the initially "hot" (3)CT states, respectively. The (3)CS state undergoes a tens-of-ns dmp(.-)→W122(.+) ET recombination leading to the ground state or, in the case of the Cu(I) azurin, a competitively fast (≈30 ns over 1.12?nm) Cu(I)→W(.+) ET, to give [Re(I)(dmp(.-))(W122)AzCu(II)]. The overall photoinduced Cu(I)→Re(dmp) ET through [Re(I)(dmp)(W122)AzCu(I)] occurs over a 2 nm distance in <50 ns after excitation, with the intervening fast (3)CT-(3)CS equilibrium being the principal accelerating factor. No reaction was observed for the three Y, F, and K122 analogues. Although the presence of [Re(dmp)(W122)AzCu(II)] oligomers in solution was documented by mass spectrometry and phosphorescence anisotropy, the kinetics data do not indicate any significant interference from the intermolecular ET steps. The ground-state dmp-indole π-π interaction together with well-matched W/W(.+) and excited-state [Re(II)(CO)(3)(dmp(.-))]/[Re(I)(CO)(3)(dmp(.-))] potentials that result in very rapid electron interchange and (3)CT-(3)CS energetic proximity, are the main factors responsible for the unique ET behavior of [Re(I)(dmp)(W122)]-containing azurins.  相似文献   

18.
We studied the LAS degradation of immobilized Pseudomonas aeruginosa with low-intensity ultrasonic and the influence of original LAS concentration, pH, rotary velocity and different conditions of low-intensity ultrasonic irradiation on the degradation of LAS. In our experiment, the degradation rate of LAS was the main index. We found that low-intensity ultrasonic irradiation could improve the metabolism of microorganism cells and promote the LAS biodegradation of immobilized cells. In the experiment, 50 mg/l LAS were used to simulate wastewater, and low-intensity ultrasonic was considered. We found the influence was obvious, and the optimal degradation rate was acquired when the conditions of ultrasonic were frequency 24 kHz, power 8 W, stimulation time 5 s, intermissive time 30 s, and total time 10 min. The LAS degradation rate of immobilized cells with ultrasonic were respectively 40% and 9.5% higher than that of the suspending cells and immobilized cells without irradiation.  相似文献   

19.
The interplay of mammalian lectins such as galectins with cellular glycoconjugates is intimately involved in crucial reaction pathways including tumor cell adhesion, migration or growth regulation. These clinically relevant functions explain the interest in designing glycoclusters with potent activity to interfere with lectin binding. In view of the perspective for medical applications the following objective arises: to correlate topological factors of ligand display most favorably to reactivity against endogenous lectins. To date, plant agglutinins have commonly been used as models. Properly addressing this issue we first prepared di- to tetravalent clusters from 2-propynyl lactoside under mild oxidative homocoupling conditions and using the Sonogashira palladium-catalyzed cross-coupling reaction with triiodobenzene or pentaerythritol cores. These products were tested for bioactivity in a competitive solid-phase assay using different labeled sugar receptors as probes, i,e. the beta-trefoil mistletoe lectin, the natural lactoside-binding immunoglobulin G fraction from human serum and three mammalian galectins from two subgroups. The lactose headgroups in the derivatives retained ligand properties. Differences in inhibitory capacity were marked between the galectins. In contrast to homodimeric proto-type galectins-1 and -7 significant inhibition of galectin-3 binding with a 7-fold increase in relative potency was observed for the trivalent compound. In comparison, the binding of the beta-trefoil mistletoe agglutinin was reduced best by tetravalent substances The result for galectin-3 was independently confirmed by haemagglutination and cytofluorometric cell binding assays. These data underline the feasibility of galectin-type target selectivity by compound design despite using an identical headgroup (lactose) in synthesis.  相似文献   

20.
The heme acquisition system A protein secreted by Pseudomonas aeruginosa (HasAp) can capture several synthetic metal complexes other than heme. The crystal structures of HasAp harboring synthetic metal complexes revealed only small perturbation of the overall HasAp structure. An inhibitory effect upon heme acquisition by HasAp bearing synthetic metal complexes was examined by monitoring the growth of Pseudomonas aeruginosa PAO1. HasAp bound to iron–phthalocyanine inhibits heme acquisition in the presence of heme‐bound HasAp as an iron source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号